LeetCode4. 寻找两个正序数组的中位数

题目描述

给定两个大小为 m 和 n 的正序(从小到大)数组 nums1 和 nums2。请你找出并返回这两个正序数组的中位数。
进阶:你能设计一个时间复杂度为 O(log (m+n)) 的算法解决此问题吗?
示例 1:
输入:nums1 = [1,3], nums2 = [2]
输出:2.00000
解释:合并数组 = [1,2,3] ,中位数 2
示例 2:
输入:nums1 = [1,2], nums2 = [3,4]
输出:2.50000
解释:合并数组 = [1,2,3,4] ,中位数 (2 + 3) / 2 = 2.5
示例 3:
输入:nums1 = [0,0], nums2 = [0,0]
输出:0.00000
示例 4:
输入:nums1 = [], nums2 = [1]
输出:1.00000
示例 5:
输入:nums1 = [2], nums2 = []
输出:2.00000
提示:
nums1.length == m
nums2.length == n
0 <= m <= 1000
0 <= n <= 1000
1 <= m + n <= 2000
-10^6 <= nums1[i], nums2[i] <= 10^6

归并排序,时空复杂度 O(m+n)

class Solution {
    public double findMedianSortedArrays(int[] nums1, int[] nums2) {
        int[] nums;
        int m = nums1.length;
        int n = nums2.length;
        nums = new int[m + n];
        if (m == 0) {
            return n % 2 == 0 ? (nums2[n / 2 - 1] + nums2[n / 2]) / 2.0 : nums2[n / 2];
        }
        if (n == 0) {
            return m % 2 == 0 ? (nums1[m / 2 - 1] + nums1[m / 2]) / 2.0 : nums1[m / 2];
        }
        int count = 0;
        int i = 0, j = 0;
        while (count != (m + n)) {
            if (i == m) {
                while (j != n) {
                    nums[count++] = nums2[j++];
                }
                break;
            }
            if (j == n) {
                while (i != m) {
                    nums[count++] = nums1[i++];
                }
                break;
            }
            if (nums1[i] < nums2[j]) {
                nums[count++] = nums1[i++];
            } else {
                nums[count++] = nums2[j++];
            }
        }
        if (count % 2 == 0) {
            return (nums[count / 2 - 1] + nums[count / 2]) / 2.0;
        } else {
            return nums[count / 2];
        }
    }
}

解法二,不需要额外空间,类似于归并排序。时间复杂度0(m + n),空间复杂度o(1)

用 len 表示合并后数组的长度,如果是奇数,我们需要知道第 (len+1)/2 个数就可以了,如果遍历的话需要遍历 int(len/2 ) + 1 次。如果是偶数,我们需要知道第 len/2和 len/2+1 个数,也是需要遍历 len/2+1 次。所以遍历的话,奇数和偶数都是 len/2+1 次。

返回中位数的话,奇数需要最后一次遍历的结果就可以了,偶数需要最后一次和上一次遍历的结果。所以我们用两个变量 left 和 right,right 保存当前循环的结果,在每次循环前将 right 的值赋给 left。这样在最后一次循环的时候,left 将得到 right 的值,也就是上一次循环的结果,接下来 right 更新为最后一次的结果。

循环中该怎么写,什么时候 A 数组后移,什么时候 B 数组后移。用 aStart 和 bStart 分别表示当前指向 A 数组和 B 数组的位置。如果 aStart 还没有到最后并且此时 A 位置的数字小于 B 位置的数组,那么就可以后移了。也就是aStart<m&&A[aStart]< B[bStart]。

但如果 B 数组此刻已经没有数字了,继续取数字 B[ bStart ],则会越界,所以判断下 bStart 是否大于数组长度了,这样 || 后边的就不会执行了,也就不会导致错误了,所以增加为 aStart<m&&(bStart) >= n||A[aStart]

class Solution {
    //思路是遍历找到中位数,总长度是len,那么遍历到len/2。
    public double findMedianSortedArrays(int[] A, int[] B) {
        int m = A.length;
        int n = B.length;
        int len = m + n;
        int left = -1, right = -1;
        int aStart = 0, bStart = 0;
        //注意区间是[0,len/2]  
        for (int i = 0; i <= len / 2; i++) {
            left = right;
            if (aStart < m && (bStart >= n || A[aStart] < B[bStart])) {
                right = A[aStart++];
            }else {
                right = B[bStart++];
            }
        }
        if ((len & 1) == 0)
            return (left + right) / 2.0;
        else
            return right;
    }
}

二分查找,时间复杂度0(log(m + n))

假设我们要找第 7 小的数字。
LeetCode4. 寻找两个正序数组的中位数_第1张图片
我们比较两个数组的第 k/2 个数字,如果 k 是奇数,向下取整。也就是比较第 3 个数字,上边数组中的 4 和下边数组中的 3,如果哪个小,就表明该数组的前 k/2 个数字都不是第 k 小数字,所以可以排除。也就是 1,2,3 这三个数字不可能是第 7 小的数字,我们可以把它排除掉。将 1349 和 45678910 两个数组作为新的数组进行比较。

橙色的部分表示已经去掉的数字。
LeetCode4. 寻找两个正序数组的中位数_第2张图片
由于我们已经排除掉了 3 个数字,就是这 3 个数字一定在最前边,所以在两个新数组中,我们只需要找第 7 - 3 = 4 小的数字就可以了,也就是 k = 4。此时两个数组,比较第 2 个数字,3 < 5,所以我们可以把小的那个数组中的 1 ,3 排除掉了。

LeetCode4. 寻找两个正序数组的中位数_第3张图片
我们又排除掉 2 个数字,所以现在找第 4 - 2 = 2 小的数字就可以了。此时比较两个数组中的第 k / 2 = 1 个数,4 == 4,怎么办呢?由于两个数相等,所以我们无论去掉哪个数组中的都行,因为去掉 1 个总会保留 1 个的,所以没有影响。为了统一,我们就假设 4 > 4 吧,所以此时将下边的 4 去掉。

LeetCode4. 寻找两个正序数组的中位数_第4张图片
由于又去掉 1 个数字,此时我们要找第 1 小的数字,所以只需判断两个数组中第一个数字哪个小就可以了,也就是 4。
所以第 7 小的数字是 4。

我们每次都是取 k/2 的数进行比较,有时候可能会遇到数组长度小于 k/2的时候。

LeetCode4. 寻找两个正序数组的中位数_第5张图片
此时 k / 2 等于 3,而上边的数组长度是 2,我们此时将箭头指向它的末尾就可以了。这样的话,由于 2 < 3,所以就会导致上边的数组 1,2 都被排除。造成下边的情况。
LeetCode4. 寻找两个正序数组的中位数_第6张图片
由于 2 个元素被排除,所以此时 k = 5,又由于上边的数组已经空了,我们只需要返回下边的数组的第 5 个数字就可以了。

从上边可以看到,无论是找第奇数个还是第偶数个数字,对我们的算法并没有影响,而且在算法进行中,k 的值都有可能从奇数变为偶数,最终都会变为 1 或者由于一个数组空了,直接返回结果。

所以我们采用递归的思路,为了防止数组长度小于 k/2,所以每次比较 min(k/2,len(数组) 对应的数字,把小的那个对应的数组的数字排除,将两个新数组进入递归,并且 k 要减去排除的数字的个数。递归出口就是当 k=1 或者其中一个数字长度是 0 了。

public double findMedianSortedArrays(int[] nums1, int[] nums2) {
    int n = nums1.length;
    int m = nums2.length;
    int left = (n + m + 1) / 2;
    int right = (n + m + 2) / 2;
    //将偶数和奇数的情况合并,如果是奇数,会求两次同样的 k。
    return (getKth(nums1, 0, n - 1, nums2, 0, m - 1, left) + getKth(nums1, 0, n - 1, nums2, 0, m - 1, right)) * 0.5;  
}
    
    private int getKth(int[] nums1, int start1, int end1, int[] nums2, int start2, int end2, int k) {
    	//长度应该 + 1,所以是end1 - start1 + 1;
        int len1 = end1 - start1 + 1;
        int len2 = end2 - start2 + 1;
        //让 len1 的长度小于 len2,这样就能保证如果有数组空了,一定是 len1 
        if (len1 > len2) return getKth(nums2, start2, end2, nums1, start1, end1, k);
        if (len1 == 0) return nums2[start2 + k - 1];

        if (k == 1) return Math.min(nums1[start1], nums2[start2]);
		//数组从 0 开始,所以要减去 1
        int i = start1 + Math.min(len1, k / 2) - 1;
        int j = start2 + Math.min(len2, k / 2) - 1;

        if (nums1[i] > nums2[j]) {
            return getKth(nums1, start1, end1, nums2, j + 1, end2, k - (j - start2 + 1));
        }else {
            return getKth(nums1, i + 1, end1, nums2, start2, end2, k - (i - start1 + 1));
        }
    }

你可能感兴趣的:(Leetcode刷题,leetcode)