批 :一批数据,通常为mini-batch
标准化: 0均值, 1方差
1、可以用更大学习率,加速模型收敛
2、可以不用精心设计权值初始化
3、可以不用dropout或较小的dropout
4、可以不用L2或者较小的weight decay
5、可以不用LRN(local response normalization)
affine transform:指 y i = λ x i + β y_i = \lambda x_i + \beta yi=λxi+β, λ 和 β \lambda 和 \beta λ和β是可学习的。
# ======================================== nn.BatchNorm1d
import torch
import numpy as np
import torch.nn as nn
import sys, os
hello_pytorch_DIR = os.path.abspath(os.path.dirname(__file__)+os.path.sep+".."+os.path.sep+"..")
sys.path.append(hello_pytorch_DIR)
from PYTORCH.Deep_eye.Pytorch_Camp_master.hello_pytorch.tools.common_tools import set_seed
set_seed(1) # 设置随机种子
flag = 1
# flag = 0
if flag:
batch_size = 3
num_features = 5 # 一个样本的特征数量
momentum = 0.3 # 指数加权平均估计当前mean/var
features_shape = (1)
feature_map = torch.ones(features_shape) # 1D
feature_maps = torch.stack([feature_map*(i+1) for i in range(num_features)], dim=0) # 2D
feature_maps_bs = torch.stack([feature_maps for i in range(batch_size)], dim=0) # 3D
print("input data:\n{} shape is {}".format(feature_maps_bs, feature_maps_bs.shape))
bn = nn.BatchNorm1d(num_features=num_features, momentum=momentum)
running_mean, running_var = 0, 1
for i in range(2):
outputs = bn(feature_maps_bs)
print("\niteration:{}, running mean: {} ".format(i, bn.running_mean))
print("iteration:{}, running var:{} ".format(i, bn.running_var))
mean_t, var_t = 2, 0
running_mean = (1 - momentum) * running_mean + momentum * mean_t # 初始时running_mean = 0
running_var = (1 - momentum) * running_var + momentum * var_t
print("iteration:{}, 第二个特征的running mean: {} ".format(i, running_mean))
print("iteration:{}, 第二个特征的running var:{}".format(i, running_var))
input data:
tensor([[[1.],
[2.],
[3.],
[4.],
[5.]],
[[1.],
[2.],
[3.],
[4.],
[5.]],
[[1.],
[2.],
[3.],
[4.],
[5.]]]) shape is torch.Size([3, 5, 1])
iteration:0, running mean: tensor([0.3000, 0.6000, 0.9000, 1.2000, 1.5000])
iteration:0, running var:tensor([0.7000, 0.7000, 0.7000, 0.7000, 0.7000])
iteration:0, 第二个特征的running mean: 0.6
iteration:0, 第二个特征的running var:0.7
iteration:1, running mean: tensor([0.5100, 1.0200, 1.5300, 2.0400, 2.5500])
iteration:1, running var:tensor([0.4900, 0.4900, 0.4900, 0.4900, 0.4900])
iteration:1, 第二个特征的running mean: 1.02
iteration:1, 第二个特征的running var:0.48999999999999994
# ======================================== nn.BatchNorm2d
flag = 1
# flag = 0
if flag:
batch_size = 3
num_features = 6
momentum = 0.3
features_shape = (2, 2)
feature_map = torch.ones(features_shape) # 2D
feature_maps = torch.stack([feature_map*(i+1) for i in range(num_features)], dim=0) # 3D
feature_maps_bs = torch.stack([feature_maps for i in range(batch_size)], dim=0) # 4D
print("input data:\n{} shape is {}".format(feature_maps_bs, feature_maps_bs.shape))
bn = nn.BatchNorm2d(num_features=num_features, momentum=momentum)
running_mean, running_var = 0, 1
for i in range(2):
outputs = bn(feature_maps_bs)
print("\niter:{}, running_mean.shape: {}".format(i, bn.running_mean.shape))
print("iter:{}, running_var.shape: {}".format(i, bn.running_var.shape))
print("iter:{}, weight.shape: {}".format(i, bn.weight.shape))
print("iter:{}, bias.shape: {}".format(i, bn.bias.shape))
input data:
tensor([[[[1., 1.],
[1., 1.]],
[[2., 2.],
[2., 2.]],
[[3., 3.],
[3., 3.]],
[[4., 4.],
[4., 4.]],
[[5., 5.],
[5., 5.]],
[[6., 6.],
[6., 6.]]],
[[[1., 1.],
[1., 1.]],
[[2., 2.],
[2., 2.]],
[[3., 3.],
[3., 3.]],
[[4., 4.],
[4., 4.]],
[[5., 5.],
[5., 5.]],
[[6., 6.],
[6., 6.]]],
[[[1., 1.],
[1., 1.]],
[[2., 2.],
[2., 2.]],
[[3., 3.],
[3., 3.]],
[[4., 4.],
[4., 4.]],
[[5., 5.],
[5., 5.]],
[[6., 6.],
[6., 6.]]]]) shape is torch.Size([3, 6, 2, 2])
iter:0, running_mean.shape: torch.Size([6])
iter:0, running_var.shape: torch.Size([6])
iter:0, weight.shape: torch.Size([6])
iter:0, bias.shape: torch.Size([6])
iter:1, running_mean.shape: torch.Size([6])
iter:1, running_var.shape: torch.Size([6])
iter:1, weight.shape: torch.Size([6])
iter:1, bias.shape: torch.Size([6])