一篇文章扒掉“桥梁Handler”的底裤

一篇文章扒掉“桥梁Handler”的底裤_第1张图片
Android跨进程要掌握的是Binder, 而同一进程中最重要的应该就是Handler 消息通信机制了。我这么说,大家不知道是否认同,如果认同,还希望能给一个关注哈。

什么是Handler?

Handler主要用于异步消息的处理:当发出一个消息之后,首先进入一个消息队列,发送消息的[函数]即刻返回,而另外一个部分在消息队列中逐一将消息取出,然后对消息进行处理,也就是发送消息和接收消息不是同步的处理。 这种机制通常用来处理相对耗时比较长的操作。

Handler特点

  1. 传递Message。用于接受子线程发送的数据, 并用此数据配合主线程更新UI。

在Android中,对于UI的操作通常需要放在主线程中进行操作。如果在子线程中有关于UI的操作,那么就需要把数据消息作为一个Message对象发送到消息队列中,然后,由Handler中的handlerMessage方法处理传过来的数据信息,并操作UI。当然,Handler对象是在主线程中初始化的,因为它需要绑定在主线程的消息队列中。

类sendMessage(Message msg)方法实现发送消息的操作。 在初始化Handler对象时重写的handleMessage方法来接收Message并进行相关操作。

  1. 传递Runnable对象。用于通过Handler绑定的消息队列,安排不同操作的执行顺序。

Handler对象在进行初始化的时候,会默认的自动绑定消息队列。利用类post方法,可以将Runnable对象发送到消息队列中,按照队列的机制按顺序执行不同的Runnable对象中的run方法。

Handler怎么用?

public class HandlerActivity extends AppCompatActivity {
    private static final String TAG = "HandlerActivity";
    @Override
    protected void onCreate(@Nullable Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        testSendMessage();
    }

    public void testSendMessage() {
         Handler handler = new MyHandler(this);
         Message message = Message.obtain();
         message.obj = "test handler send message";
         handler.sendMessage(message);
    }
    
    //注1: 为什么要用静态内部???
    static class MyHandler extends Handler {
        WeakReference activityWeakReference; // 注2:为何要用弱引用???
        public MyHandler(AppCompatActivity activity) {
            activityWeakReference = new WeakReference<>(activity);
        }

        @Override
        public void handleMessage(@NonNull Message msg) {
            super.handleMessage(msg);
            Log.d(TAG, (String) msg.obj);
        }
    }
}

Handler源码怎么读?

从使用方式的场景,咱们一步一步的探究里面是怎么实现的,还有上面的标注的两点,在后面我都会介绍的,各位客官听我慢慢道来。首先,看下四大金刚关系图,文字表述再多,不如一张图来的直接。

一篇文章扒掉“桥梁Handler”的底裤_第2张图片
通过上图就可以简单看出Handler、MessageQueue、Message、Looper 这四者是怎么样互相持有对方的,大概可以了解消息的传递。

下面我们先来一张时序图,看下消息是怎么一步步发送出来的。

一篇文章扒掉“桥梁Handler”的底裤_第3张图片
此刻,应该要开车了。前方高能!!!

  1. 进入的是Handler.sendMessage 方法

    public final boolean sendMessage(@NonNull Message msg) {
     return sendMessageDelayed(msg, 0);
    }
  2. 接下来继续调用Handler.sendMessageDelayed方法

    public final boolean sendMessageDelayed(@NonNull Message msg, long delayMillis) {
     if (delayMillis < 0) {
         delayMillis = 0;
     }
     return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
    }
  3. 接着走Handler.sendMessageAtTime 方法,这里面就要用到MessageQueue 对象了,此处说明一下,这个mQueue 是在哪里获取到的,是在Handler 构造方法里。此处贴图,从图中可以看出mLooper=Looper.myLooper() mQueue=mLooper.mQueue Handler 中的MessageQueue 是Looper 中持有的MessageQueue 对象 。

一篇文章扒掉“桥梁Handler”的底裤_第4张图片
注1 为啥要用静态内部类---->如果我们使用Handler 类,没有用static 关键字修饰的话,则会输出Log: The following Handler class should be static or leaks might occur: 会提示你可能会引起内存泄漏。因此在注1 处我用了static 修饰。

好,这里就说这么多,接着开车:

public boolean sendMessageAtTime(@NonNull Message msg, long uptimeMillis) {
    MessageQueue queue = mQueue;
    if (queue == null) {
        RuntimeException e = new RuntimeException(
                this + " sendMessageAtTime() called with no mQueue");
        Log.w("Looper", e.getMessage(), e);
        return false;
    }
    return enqueueMessage(queue, msg, uptimeMillis);
}
  1. 接着时序图上的流程走,此时要进入到MessageQueue.enqueueMessage 方法中,该方法就是将msg 对象存入到MessageQueue 队列中,注意此处,将该handler 对象赋值给了msg.target,这个后面会用到的,很关键。
private boolean enqueueMessage(@NonNull MessageQueue queue, @NonNull Message msg,
        long uptimeMillis) {
    msg.target = this;
    msg.workSourceUid = ThreadLocalWorkSource.getUid();

    if (mAsynchronous) {
        msg.setAsynchronous(true);
    }
    return queue.enqueueMessage(msg, uptimeMillis); //3,即将进入MessageQueue.enqueueMessage 方法。
}
  1. 接着来看MessageQueue.enqueueMessage 方法,该方法就是按照时间的顺序插入到Message 这个链表结构的数据对象中去。
boolean enqueueMessage(Message msg, long when) {
    if (msg.target == null) { //4. 后面说明,这个也就是四大金刚图里的msg.target 所持有的Handler 对象。
        throw new IllegalArgumentException("Message must have a target.");
    }

    synchronized (this) {
        ...
        msg.markInUse();
        msg.when = when;
        Message p = mMessages;
        boolean needWake;
        if (p == null || when == 0 || when < p.when) {
            // New head, wake up the event queue if blocked.
            msg.next = p;
            mMessages = msg;
            needWake = mBlocked;
        } else {
            // 链表的插入操作,不太熟悉的可以看看数据结构。(此处是根据时间来排序的)
            needWake = mBlocked && p.target == null && msg.isAsynchronous();
            Message prev;
            for (;;) {
                prev = p;
                p = p.next;
                if (p == null || when < p.when) {
                    break;
                }
                if (needWake && p.isAsynchronous()) {
                    needWake = false;
                }
            }
            msg.next = p; // invariant: p == prev.next
            prev.next = msg;
        }

        // We can assume mPtr != 0 because mQuitting is false.
        if (needWake) {
            nativeWake(mPtr); //画重点,此处唤醒等待的next 方法。
        }
    }
    return true;
}

此时,一条消息就相当于入队了。 MessageQueue 从名称来看是队列,实际上,使用的还是Message.next 指针来进行操作的,也即是链表的操作。消息的入队完成,后面将会介绍该消息是怎么发送出去的。

  1. Loop.loop方法,敲重点。省略了部分代码,只关注核心代码。这里用到了死循环,不停的获取Message 对象,获取到之后直接调用Message.target 变量所持有的Handler 对象,然后调用Handler.dispatchMessage 方法,这样就完成了消息的分发。
public static void loop() {
    final Looper me = myLooper();
    ...
    final MessageQueue queue = me.mQueue;
    ...
    for (;;) {
        Message msg = queue.next(); // might block   //7.通过MessageQueue.next()方法获取Message对象。
        ...
        final long start = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();
        final long end;
        try {
            msg.target.dispatchMessage(msg);
            end = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();
        } finally {
            if (traceTag != 0) {
                Trace.traceEnd(traceTag);
            }
        }
        ...
        msg.recycleUnchecked();
    }
}

7-8. MessageQueue.next() 方法获取Message 对象。

Message next() {
    ...
    int pendingIdleHandlerCount = -1; // -1 only during first iteration
    int nextPollTimeoutMillis = 0;
    for (;;) { //死循环
        if (nextPollTimeoutMillis != 0) {
            Binder.flushPendingCommands();
        }

        nativePollOnce(ptr, nextPollTimeoutMillis);   // 5: 避免了阻塞的关键点,释放资源,处于等待。疑点:处于等待,肯定需要一个东西来唤醒它。上面第5步分析enqueueMessage的时候有行代码if (needWake) {
            nativeWake(mPtr); //画重点,此处唤醒等待的next 方法。
        } 。

        synchronized (this) {
            // Try to retrieve the next message.  Return if found.
            final long now = SystemClock.uptimeMillis();
            Message prevMsg = null;
            Message msg = mMessages;
            if (msg != null && msg.target == null) { //******此条件可以先不看,因为通过Handler 发送的消息target 都会持有Handler,该逻辑不会触发。消息同步屏障的时候会优先触发该逻辑。
                // Stalled by a barrier.  Find the next asynchronous message in the queue.
                do {
                    prevMsg = msg;
                    msg = msg.next;
                } while (msg != null && !msg.isAsynchronous());
            }
            if (msg != null) { //查找当前的msg 对象。
                if (now < msg.when) {
                    // Next message is not ready.  Set a timeout to wake up when it is ready.
                    nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
                } else {
                    // Got a message.
                    mBlocked = false;
                    if (prevMsg != null) {
                        prevMsg.next = msg.next;
                    } else {
                        mMessages = msg.next;
                    }
                    msg.next = null;
                    if (DEBUG) Log.v(TAG, "Returning message: " + msg);
                    msg.markInUse();
                    return msg;
                }
            } else {
                // No more messages.
                nextPollTimeoutMillis = -1;
            }
         ...
        nextPollTimeoutMillis = 0;
    }
}
  1. Handler.dispatchMessage 方法,此处有判断,如果在Activity中使用view.post方法调用的时候,就会走到handleCallback 回调中。通过sendMessagexxx函数发送消息的就会走到handleMessage回调中去。
/**
 * Handle system messages here.
 */
public void dispatchMessage(Message msg) {
    if (msg.callback != null) {
        handleCallback(msg);
    } else {
        if (mCallback != null) {
            if (mCallback.handleMessage(msg)) {
                return;
            }
        }
        handleMessage(msg);
    }
}

该方法会会将msg 对象发送到客户端定义Handler 的地方,重写的handleMessage 方法。至此,Handler 发送消息的流程大致介绍完成。

总结

Handler 发送消息的时候,在Handler.enqueueMessage 方法中,将该Handler 对象添加到Message中的target 属性中,这样就完成了Message 持有Handler 的操作,为最后Message.target.dispatchMessage 做了保证。然后将该Message 对象放入到MessageQueue中的Message.next 中去,完成了消息链表的添加;而这个MessageQueue 是Looper 中所持有的对象,这样就可以通过Looper类通过对MessageQueue.next()---->Message.next()--->Message.target.dispatchMessage(msg)完成了消息的分发。

一篇文章扒掉“桥梁Handler”的底裤_第5张图片

知识点补充

  1. Looper 对象是怎么new 出来的?
    一篇文章扒掉“桥梁Handler”的底裤_第6张图片
    上图看出是在应用程序进程的ActivityThread 类中的main() 函数中调用了Looper.prepareMainLooper() 方法,就new 出来了主线程中的Looper.
    一篇文章扒掉“桥梁Handler”的底裤_第7张图片
    上图也看出,这个Looper.prepareMainLooper()方法是系统调用的,开发者不能再次调用了,否则会抛出异常。
    一篇文章扒掉“桥梁Handler”的底裤_第8张图片
    prepare这个方法真正的new Looper 了。接着来看看Looper 的构造函数

一篇文章扒掉“桥梁Handler”的底裤_第9张图片
此处创建了MessageQueue, Handler 中的MessageQueue 就是这块创建的。

  1. 为什么将Looper 保存在ThreadLocal 中?

ThreadLocal:线程的变量副本,每个线程隔离.我的理解就是,ThreadLocal 内部使用了当前线程为Key,需要存储的对象为Value,通过字典保存起来的,这样客户端在获取的时候,当前线程就只会获取一份保存的Value.回到Looper中,就可以知道一个线程里按理说就会只有一个Looper。

  1. Message 为什么推荐使用obtain() 方式获取Message对象,而不推荐使用new Message()?

这里涉及到池的技术的应用: Message中维护了一个消息池,消息使用完就会回收。减少对象创建和销毁的开销;java 当中的线程池也是用到了该思想。

  1. 同步屏障:

同步屏障机制的作用,是让这个绘制消息得以越过其他的消息,优先被执行。系统中UI绘制会使用到同步屏障,开发中基本用不到。核心代码: 先设置一个target=null 的消息,插入到消息链表的头部。
一篇文章扒掉“桥梁Handler”的底裤_第10张图片
然后在MessageQueue.next 中 优先查找同步屏障中的消息asyncHronous 设置为true的异步消息。

一篇文章扒掉“桥梁Handler”的底裤_第11张图片

  1. Handler为什么会导致内存泄漏以及解决方案?

Handler导致内存泄漏一般发生在发送延迟消息的时候,当Activity关闭之后,延迟消息还没发出,那么主线程中的MessageQueue就会持有这个消息的引用,而这个消息是持有Handler的引用,而handler作为匿名内部类持有了Activity的引用,所以就有了以下的一条引用链。
解决:1.使用静态内部类,如果要调用Activity中的方法,就可以在静态内部类中设置一个
WeakReference activityWeakReference; 引用。

2.在Activity销毁的时候,即onDestory()方法中调用handler.removeCallbacks,移除runnable。

结尾

OK,本次的Android进阶技术之Handler到此就全部写完了,希望喜欢的朋友不要吝啬你的赞,你的评论,点赞,收藏就是对我最大的支持,记得关注我哦,咱们文章每日都会更新,感谢大家的观看。

你可能感兴趣的:(一篇文章扒掉“桥梁Handler”的底裤)