【Easy-RL】中科院-清华-北大3位作者贡献的200页强化学习总结笔记

深度强化学习实验室

官网:http://www.neurondance.com/

论坛http://deeprl.neurondance.com/

编辑:DeepRL

核心贡献者:王琦、杨毅远、江季

【Easy-RL】中科院-清华-北大3位作者贡献的200页强化学习总结笔记_第1张图片

关于本书

《Easy-RL》由开源组织 Datawhale 发起,由中科院王琦、清华大学杨毅远、北京大学江季三位组织成员主要负责。本书结合了李宏毅老师的《深度强化学习》、周博磊老师的《强化学习纲要》、李科浇老师的《百度强化学习》等多个强化学习的经典资料,并配有相关的习题、面经以及完全版的代码实战,适合想入门强化学习的小伙伴。

【Easy-RL】中科院-清华-北大3位作者贡献的200页强化学习总结笔记_第2张图片

项目开源地址:

https://github.com/datawhalechina/easy-rl

2020 年 11 月 22 日,《Easy-RL》(原《李宏毅深度强化学习笔记》)在github中正式发布,截至今日,已收获1.7k个Star,并受到了广大学习者的一致好评,学习者纷纷表示通过这个教程收获颇多。编写者们也通过读者反馈的建议,对教程进行了实时地更新与补充。

【Easy-RL】中科院-清华-北大3位作者贡献的200页强化学习总结笔记_第3张图片

本书细节

时隔半年,《Easy-RL》 在原有的基础上进行了充分地迭代和优化,不仅对发布时已有章节进行了完善和纠错,同时还补充了常见的面试题,当然,项目作者还给出了完全版的强化学习实战代码,方便大家深入学习。

1.教程案例

案例1: 对 Policy 概念的解析

【Easy-RL】中科院-清华-北大3位作者贡献的200页强化学习总结笔记_第4张图片

案例2: 利用简单的例子解释强化学习基本概念

【Easy-RL】中科院-清华-北大3位作者贡献的200页强化学习总结笔记_第5张图片

案例3: AlphaStar 论文解读

【Easy-RL】中科院-清华-北大3位作者贡献的200页强化学习总结笔记_第6张图片

2.教程习题

案例: RL的面试真题

【Easy-RL】中科院-清华-北大3位作者贡献的200页强化学习总结笔记_第7张图片 【Easy-RL】中科院-清华-北大3位作者贡献的200页强化学习总结笔记_第8张图片

3.实践优化

首先是增加了一些更为高级且研究工程上常用的算法,比如TD3,Soft-Actor-Critic等等,新版所有算法实现如下表:

【Easy-RL】中科院-清华-北大3位作者贡献的200页强化学习总结笔记_第9张图片

此外在每个算法目录下会有相关的算法实现说明:

【Easy-RL】中科院-清华-北大3位作者贡献的200页强化学习总结笔记_第10张图片

并且代码将更加简洁,结构清晰,具体可以去github上细看,此外为了更好地呈现结果,增加了jupyter notebook来训练,可以在网页直接查看结果,同时也说明outputs文件夹下生成的结果是童叟无欺的,如下:

【Easy-RL】中科院-清华-北大3位作者贡献的200页强化学习总结笔记_第11张图片

以上就是代码相关的主要优化,不止如此,今后除了修缮代码结构注释等等,还会增加各种各样的DQN比如rainbow-dqn等代码,以及各种算法对于同一环境的实现对比,敬请期待。

Easy-RL目录

【Easy-RL】中科院-清华-北大3位作者贡献的200页强化学习总结笔记_第12张图片

【Easy-RL】中科院-清华-北大3位作者贡献的200页强化学习总结笔记_第13张图片

下载地址:https://pan.baidu.com/s/11DK568SHtzqz2QP2_6qKtw

提取码: rnxj 

总结1:周志华 || AI领域如何做研究-写高水平论文

总结2:全网首发最全深度强化学习资料(永更)

总结3:  《强化学习导论》代码/习题答案大全

总结4:30+个必知的《人工智能》会议清单

总结52019年-57篇深度强化学习文章汇总

总结6:   万字总结 || 强化学习之路

总结7:万字总结 || 多智能体强化学习(MARL)大总结

总结8:深度强化学习理论、模型及编码调参技巧

第106篇:奖励机制不合理:内卷,如何解决?

第105篇:FinRL: 一个量化金融自动交易RL库

第104篇:RPG: 通过奖励发现多智能体多样性策略

第103篇:解决MAPPO(Multi-Agent PPO)技巧

第102篇:82篇AAAI2021强化学习论文接收列表

第101篇:OpenAI科学家提出全新强化学习算法

第100篇:Alchemy: 元强化学习(meta-RL)基准环境

第99篇:NeoRL:接近真实世界的离线强化学习基准

第98篇:全面总结(值函数与优势函数)的估计方法

第97篇:MuZero算法过程详细解读

第96篇:  值分布强化学习(Distributional RL)总结

第95篇:如何提高"强化学习算法模型"的泛化能力?

第94篇:多智能体强化学习《星际争霸II》研究

第93篇:MuZero在Atari基准上取得了新SOTA效果

第92篇:谷歌AI掌门人Jeff Dean获冯诺依曼奖

第91篇:详解用TD3算法通关BipedalWalker环境

第90篇:Top-K Off-Policy  RL论文复现

第89篇:腾讯开源分布式多智能TLeague框架

第88篇:分层强化学习(HRL)全面总结

第87篇:165篇CoRL2020 accept论文汇总

第86篇:287篇ICLR2021深度强化学习论文汇总

第85篇:279页总结"基于模型的强化学习方法"

第84篇:阿里强化学习领域研究助理/实习生招聘

第83篇:180篇NIPS2020顶会强化学习论文

第82篇:强化学习需要批归一化(Batch Norm)吗?

第81篇:《综述》多智能体强化学习算法理论研究

第80篇:强化学习《奖励函数设计》详细解读

第79篇: 诺亚方舟开源高性能强化学习库“刑天”

第78篇:强化学习如何tradeoff"探索"和"利用"?

第77篇:深度强化学习工程师/研究员面试指南

第76篇:DAI2020 自动驾驶挑战赛(强化学习)

第75篇:Distributional Soft Actor-Critic算法

第74篇:【中文公益公开课】RLChina2020

第73篇:Tensorflow2.0实现29种深度强化学习算法

第72篇:【万字长文】解决强化学习"稀疏奖励"

第71篇:【公开课】高级强化学习专题

第70篇:DeepMind发布"离线强化学习基准“

第69篇:深度强化学习【Seaborn】绘图方法

第68篇:【DeepMind】多智能体学习231页PPT

第67篇:126篇ICML2020会议"强化学习"论文汇总

第66篇:分布式强化学习框架Acme,并行性加强

第65篇:DQN系列(3): 优先级经验回放(PER)

第64篇:UC Berkeley开源RAD来改进强化学习算法

第63篇:华为诺亚方舟招聘 || 强化学习研究实习生

第62篇:ICLR2020- 106篇深度强化学习顶会论文

第61篇:David Sliver 亲自讲解AlphaGo、Zero

第60篇:滴滴主办强化学习挑战赛:KDD Cup-2020

第59篇:Agent57在所有经典Atari 游戏中吊打人类

第58篇:清华开源「天授」强化学习平台

第57篇:Google发布"强化学习"框架"SEED RL"

第56篇:RL教父Sutton实现强人工智能算法的难易

第55篇:内推 ||  阿里2020年强化学习实习生招聘

第54篇:顶会 || 65篇"IJCAI"深度强化学习论文

第53篇:TRPO/PPO提出者John Schulman谈科研

第52篇:《强化学习》可复现性和稳健性,如何解决?

第51篇:强化学习和最优控制的《十个关键点》

第50篇:微软全球深度强化学习开源项目开放申请

第49篇:DeepMind发布强化学习库 RLax

第48篇:AlphaStar过程详解笔记

第47篇:Exploration-Exploitation难题解决方法

第46篇:DQN系列(2): Double DQN 算法

第45篇:DQN系列(1): Double Q-learning

第44篇:科研界最全工具汇总

第43篇:起死回生|| 如何rebuttal顶会学术论文?

第42篇:深度强化学习入门到精通资料综述

第41篇:顶会征稿 ||  ICAPS2020: DeepRL

第40篇:实习生招聘 || 华为诺亚方舟实验室

第39篇:滴滴实习生|| 深度强化学习方向

第38篇:AAAI-2020 || 52篇深度强化学习论文

第37篇:Call For Papers# IJCNN2020-DeepRL

第36篇:复现"深度强化学习"论文的经验之谈

第35篇:α-Rank算法之DeepMind及Huawei改进

第34篇:从Paper到Coding, DRL挑战34类游戏

第33篇:DeepMind-102页深度强化学习PPT

第32篇:腾讯AI Lab强化学习招聘(正式/实习)

第31篇:强化学习,路在何方?

第30篇:强化学习的三种范例

第29篇:框架ES-MAML:进化策略的元学习方法

第28篇:138页“策略优化”PPT--Pieter Abbeel

第27篇:迁移学习在强化学习中的应用及最新进展

第26篇:深入理解Hindsight Experience Replay

第25篇:10项【深度强化学习】赛事汇总

第24篇:DRL实验中到底需要多少个随机种子?

第23篇:142页"ICML会议"强化学习笔记

第22篇:通过深度强化学习实现通用量子控制

第21篇:《深度强化学习》面试题汇总

第20篇:《深度强化学习》招聘汇总(13家企业)

第19篇:解决反馈稀疏问题之HER原理与代码实现

第18篇:"DeepRacer" —顶级深度强化学习挑战赛

第17篇:AI Paper | 几个实用工具推荐

第16篇:AI领域:如何做优秀研究并写高水平论文?

第15篇:DeepMind开源三大新框架!

第14篇:61篇NIPS2019DeepRL论文及部分解读

第13篇:OpenSpiel(28种DRL环境+24种DRL算法)

第12篇:模块化和快速原型设计Huskarl DRL框架

第11篇:DRL在Unity自行车环境中配置与实践

第10篇:解读72篇DeepMind深度强化学习论文

第9篇:《AutoML》:一份自动化调参的指导

第8篇:ReinforceJS库(动态展示DP、TD、DQN)

第7篇:10年NIPS顶会DRL论文(100多篇)汇总

第6篇:ICML2019-深度强化学习文章汇总

第5篇:深度强化学习在阿里巴巴的技术演进

第4篇:深度强化学习十大原则

第3篇:“超参数”自动化设置方法---DeepHyper

第2篇:深度强化学习的加速方法

第1篇:深入浅出解读"多巴胺(Dopamine)论文"、环境配置和实例分析

【Easy-RL】中科院-清华-北大3位作者贡献的200页强化学习总结笔记_第14张图片

你可能感兴趣的:(强化学习,人工智能,xhtml,编程语言,敏捷开发)