本文使用SparkMllib搭建简单的线性回归例子
数据下载地址
package SparkMlibCourse3
import org.apache.log4j.{Level, Logger}
import org.apache.spark.sql.{DataFrame, SQLContext}
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.mllib.linalg.{Vector, Vectors}
import org.apache.spark.ml.feature.VectorAssembler
import org.apache.spark.ml.regression.LinearRegression
/**
* Created by zhaohui.
* 利用线性回归模型对数据进行回归预测
*/
object SparkMlibLRAdd1 {
def main(args: Array[String]): Unit = {
//设置环境
//构建Spark对象
val conf = new SparkConf().setMaster("local") setAppName ("ExampleLinearRegressionWithSGD")
val sc = new SparkContext(conf)
val sqc = new SQLContext(sc)
Logger.getRootLogger.setLevel(Level.WARN)
//准备训练集合
val DataPath = "LR_data\\"
val raw_data = sc.textFile(DataPath + "train.txt")
val map_data = raw_data.map { x =>
val split_list = x.split(",")
(split_list(0).toDouble, split_list(1).toDouble, split_list(2).toDouble, split_list(3).toDouble, split_list(4).toDouble, split_list(5).toDouble, split_list(6).toDouble, split_list(7).toDouble)
}
val df = sqc.createDataFrame(map_data)
val data = df.toDF("Population", "Income", "Illiteracy", "LifeExp", "Murder", "HSGrad", "Frost", "Area")
val colArray = Array("Population", "Income", "Illiteracy", "LifeExp", "HSGrad", "Frost", "Area")
val assembler = new VectorAssembler().setInputCols(colArray).setOutputCol("features")
val vecDF: DataFrame = assembler.transform(data)
//准备预测集合
val raw_data_predict = sc.textFile(DataPath + "test.txt")
val map_data_for_predict = raw_data_predict.map { x =>
val split_list = x.split(",")
(split_list(0).toDouble, split_list(1).toDouble, split_list(2).toDouble, split_list(3).toDouble, split_list(4).toDouble, split_list(5).toDouble, split_list(6).toDouble, split_list(7).toDouble)
}
val df_for_predict = sqc.createDataFrame(map_data_for_predict)
val data_for_predict = df_for_predict.toDF("Population", "Income", "Illiteracy", "LifeExp", "Murder", "HSGrad", "Frost", "Area")
val colArray_for_predict = Array("Population", "Income", "Illiteracy", "LifeExp", "HSGrad", "Frost", "Area")
val assembler_for_predict = new VectorAssembler().setInputCols(colArray_for_predict).setOutputCol("features")
val vecDF_for_predict: DataFrame = assembler_for_predict.transform(data_for_predict)
// 建立模型,预测谋杀率Murder
// 设置线性回归参数
val lr1 = new LinearRegression()
val lr2 = lr1.setFeaturesCol("features").setLabelCol("Murder").setFitIntercept(true)
// RegParam:正则化
val lr3 = lr2.setMaxIter(10).setRegParam(0.3).setElasticNetParam(0.8)
val lr = lr3
// 将训练集合代入模型进行训练
val lrModel = lr.fit(vecDF)
// 输出模型全部参数
lrModel.extractParamMap()
// Print the coefficients and intercept for linear regression
println(s"Coefficients: ${lrModel.coefficients} Intercept: ${lrModel.intercept}")
// 模型进行评价
val trainingSummary = lrModel.summary
println(s"numIterations: ${trainingSummary.totalIterations}")
println(s"objectiveHistory: ${trainingSummary.objectiveHistory.toList}")
trainingSummary.residuals.show()
println(s"RMSE: ${trainingSummary.rootMeanSquaredError}")
println(s"r2: ${trainingSummary.r2}")
val predictions: DataFrame = lrModel.transform(vecDF_for_predict)
// val predictions = lrModel.transform(vecDF)
println("输出预测结果")
val predict_result: DataFrame = predictions.selectExpr("features", "Murder", "round(prediction,1) as prediction")
predict_result.foreach(println(_))
sc.stop()
}
}