- 基于ChatGPT、GIS与Python机器学习的地质灾害风险评估、易发性分析、信息化建库及灾后重建高级实践
weixin_贾
防洪评价风险评估滑坡泥石流地质灾害
第一章、ChatGPT、DeepSeek大语言模型提示词与地质灾害基础及平台介绍【基础实践篇】1、什么是大模型?大模型(LargeLanguageModel,LLM)是一种基于深度学习技术的大规模自然语言处理模型。代表性大模型:GPT-4、BERT、T5、ChatGPT等。特点:多任务能力:可以完成文本生成、分类、翻译、问答等任务。上下文理解:能理解复杂的上下文信息。广泛适配性:适合科研、教育、行
- 栈 力扣hot100热门面试算法题 面试基础 核心思路 背题 滑动窗口最大值 字符串解码 每日温度 柱状图中最大矩形 有效的括号 最小栈
尘土哥
算法leetcode面试
栈栈的核心思路:每个数都要进栈or队列,但是要及时维护栈or队列,当某元素没有存在的意义时就删掉,关键是思考栈尾什么时候有用与没用。滑动窗口最大值https://leetcode.cn/problems/sliding-window-maximum/题解链接https://leetcode.cn/problems/sliding-window-maximum/solutions/3067170/d
- 使用OTP动态令牌认证
yangtom249
Pythonpython
为加强网络安全管理,降低帐号被冒用、盗用等带来的风险,有些系统启用OTP手机令牌双因子认证登录,即在原有用户名+密码认证的基础上,增加OTP动态口令认证。基于OTP算法的动态令牌加强了帐号的安全性,简单易用。1、什么是OTP动态令牌认证?OTP(One-TimePassword)是一种基于共享密钥和时间戳算法的一次性密码。一般每30或60秒产生一个新口令,在客户端的动态口令和服务器的动态口令验证时
- 广州各大IT公司情况调查总结
Monika Zhang
就业面试攻略其他
腾讯微信地址:广东省广州市海珠区新港中路397号TIT创意园B1-B3号使用C语言,C#居多门槛比较高字节跳动广州市天河区珠江东路6号广州周大福金融中心15层01-06室应聘比较注重算法阿里广州市海珠区阅江西路唯品会总部大厦西侧约170米不需要机试,面试难度比较高,注重技术深度,要有一技之长华为广州市黄埔区黄埔东路与红荔西路交叉路口往南约80米需要机试,三道算法题,400分,150分及格,多刷题不
- 人脸识别的一些代码
饿了就干饭
CV相关人脸识别
1、cv2入门函数imread及其相关操作2、(详解)opencv里的cv2.resize改变图片大小Python3、机器学习之人脸识别face_recognition使用4、使用face_recognition进行人脸校准5、简单的人脸识别通用流程示意图(这个看着写的挺好的)6、face_recognition和图像处理中left、top、right、bottom解释7、使用pillow库对图片
- YOLO算法全面改进指南(二)
niuTaylor
YOLO改进YOLO算法
以下是为YOLO系列算法设计的系统性改进框架,结合前沿技术与多领域创新,提供可支持高水平论文发表的详细改进思路。本方案整合了轻量化设计、多模态融合、动态特征优化等创新点,并给出可验证的实验方向。一、多模态提示驱动的开放场景检测系统1.核心创新三模态提示机制:文本提示编码器:基于RepRTA(可重参数化区域文本对齐)构建轻量级文本编码网络,将自然语言描述映射为128维语义向量。视觉提示编码器:采用S
- 算法之魂:深入剖析数据结构中的七大排序算法
GeminiGlory
数据结构数据结构排序算法算法
目录1.冒泡排序(BubbleSort)2.选择排序(SelectionSort)3.插入排序(InsertionSort)4.希尔排序(ShellSort)5.快速排序(QuickSort)6.归并排序(MergeSort)7.堆排序(HeapSort)在计算机科学领域,排序是一项基础但至关重要的操作。无论你是处理数据库查询结果还是优化搜索效率,了解不同的排序算法及其适用场景都至关重要。本文将介
- 回归任务训练--MNIST全连接神经网络(Mnist_NN)
豆芽819
深度学习框架PyTorchpytorch深度学习人工智能机器学习回归
importtorchimportnumpyasnpimportloggingfromtorch.utils.dataimportTensorDataset,DataLoaderfromtorch.utils.dataimportDataLoader#配置日志logging.basicConfig(level=logging.INFO,format='%(asctime)s-%(levelname
- LLM-Agent方法评估与效果分析
agent人工智能ai开发
1.引言近年来,随着大型语言模型(LLM)的快速发展,基于强化学习(RL)对LLM进行微调以使其具备代理(Agent)能力成为研究热点。从基础的单智能体强化学习算法(如PPO)到多智能体协作、语料重组以及在线自学习等新技术不断涌现,研究人员致力于探索如何提高LLM在实际应用中的决策能力、推理能力和任务执行效率。本文主要聚焦于当前LLM-Agent方法的检索与评估,旨在全面探讨各类方法的技术实现、实
- 算法刷题记录——LeetCode篇(1) [第1~100题](持续更新)
Allen Wurlitzer
实战-算法解题算法leetcode职场和发展
更新时间:2025-03-21LeetCode刷题目录:算法刷题记录——专题目录汇总技术博客总目录:计算机技术系列博客——目录页优先整理热门100及面试150,不定期持续更新,欢迎关注!1.两数之和给定一个整数数组nums和一个整数目标值target,请你在该数组中找出和为目标值target的那两个整数,并返回它们的数组下标。你可以假设每种输入只会对应一个答案,并且你不能使用两次相同的元素。你可以
- LLM 大模型技术知识最佳学习路径图发布!
AGI-杠哥
学习人工智能语言模型agi自然语言处理
近日,经常有小伙伴私信我,大模型知识太多了,有点懵啊,我该如何学习LLM大模型?今天我们就来剖析下LLM大模型技术知识的学习路径。如果你是一个LLM大模型的“技术小白”,我们建议的学习路径如下:技术交流群前沿技术资讯、算法交流、求职内推、算法竞赛、面试交流(校招、社招、实习)等、与10000+来自港科大、北大、清华、中科院、CMU、腾讯、百度等名校名企开发者互动交流~我们建了大模型技术与面试交流群
- 探索Python中的集成方法:Stacking
Echo_Wish
Python笔记Python算法python开发语言
在机器学习领域,Stacking是一种高级的集成学习方法,它通过将多个基本模型的预测结果作为新的特征输入到一个元模型中,从而提高整体模型的性能和鲁棒性。本文将深入介绍Stacking的原理、实现方式以及如何在Python中应用。什么是Stacking?Stacking,又称为堆叠泛化(StackedGeneralization),是一种模型集成方法,与Bagging和Boosting不同,它并不直
- 【Python】 Stacking: 强大的集成学习方法
音乐学家方大刚
Pythonpython集成学习开发语言
我们都找到天使了说好了心事不能偷藏着什么都一起做幸福得没话说把坏脾气变成了好沟通我们都找到天使了约好了负责对方的快乐阳光下的山坡你素描的以后怎么抄袭我脑袋想的薛凯琪《找到天使了》在机器学习中,单一模型的性能可能会受到其局限性和数据的影响。为了解决这个问题,我们可以使用集成学习(EnsembleLearning)方法。集成学习通过结合多个基模型的预测结果,来提高整体模型的准确性和稳健性。Stacki
- Stacking算法:集成学习的终极武器
civilpy
算法集成学习机器学习
Stacking算法:集成学习的终极武器在机器学习的竞技场中,集成学习方法以其卓越的性能而闻名。其中,Stacking(堆叠泛化)作为一种高级集成技术,更是被誉为“集成学习的终极武器”。本文将带你深入了解Stacking算法的原理和实现,并提供一些实战技巧和最佳实践。1.Stacking算法原理探秘Stacking算法的核心思想是训练多个不同的基模型,并将它们的预测结果作为新模型的输入特征,以此来
- 集成学习(上):Bagging集成方法
万事可爱^
机器学习修仙之旅#监督学习集成学习机器学习人工智能Bagging随机森林
一、什么是集成学习?在机器学习的世界里,没有哪个模型是完美无缺的。就像古希腊神话中的"盲人摸象",单个模型往往只能捕捉到数据特征的某个侧面。但当我们把多个模型的智慧集合起来,就能像拼图一样还原出完整的真相,接下来我们就来介绍一种“拼图”算法——集成学习。集成学习是一种机器学习技术,它通过组合多个模型(通常称为“弱学习器”或“基础模型”)的预测结果,构建出更强、更准确的学习算法。这种方法的主要思想是
- 直方图梯度提升:大数据时代的极速决策引擎
万事可爱^
大数据机器学习深度学习直方图梯度提升GBDT算法
一、为什么需要直方图梯度提升?在Kaggle竞赛的冠军解决方案中,超过70%的获奖方案都使用了梯度提升算法。但当数据量突破百万级时,传统梯度提升树(GBDT)面临三大致命瓶颈:训练耗时剧增:每个特征的分割点计算都需要全量数据排序内存消耗爆炸:存储排序后的特征值需要额外空间处理效率低下:无法有效利用现代CPU的多核特性而梯度提升决策树(GBDT)作为集成学习的代表算法,通过迭代构建决策树实现预测能力
- 【集成学习】:Stacking原理以及Python代码实现
Geeksongs
机器学习python机器学习深度学习人工智能算法
Stacking集成学习在各类机器学习竞赛当中得到了广泛的应用,尤其是在结构化的机器学习竞赛当中表现非常好。今天我们就来介绍下stacking这个在机器学习模型融合当中的大杀器的原理。并在博文的后面附有相关代码实现。总体来说,stacking集成算法主要是一种基于“标签”的学习,有以下的特点:用法:模型利用交叉验证,对训练集进行预测,从而实现二次学习优点:可以结合不同的模型缺点:增加了时间开销,容
- Redis 哨兵模式的选举算法是什么?
少林码僧
redissentinel
Redis哨兵模式中的选举算法主要用于在主节点出现故障时,从多个Sentinel节点中选出一个领导者(Leader)来执行故障转移操作。Redis哨兵的选举算法基于Raft算法的简化版本,但不完全等同于标准的Raft算法。以下是其主要过程:一、发现主节点故障当一个Sentinel节点主观地认为主节点不可达时(通常是在一定时间内没有收到主节点的PING回复),它会将主节点标记为主观下线(Subjec
- windows使用ssh-copy-id命令的解决方案
爱编程的喵喵
Windows实用技巧windowssshssh-copy-id解决方案
大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的知识进行总结与归纳,不仅形成深入且独到的理解,而且能够帮助新手快速入门。 本文主要介绍了windows使用ssh-copy-
- Kafka 的消息压缩机制:优化存储与传输的利器
阿贾克斯的黎明
javalinqc#java
目录Kafka的消息压缩机制:优化存储与传输的利器一、消息压缩机制的重要意义1.减少存储成本2.提升网络传输效率二、Kafka常用的消息压缩算法1.GZIP压缩2.Snappy压缩3.前端展示压缩状态(Vue3+TS)在消息中间件的大家族中,Kafka以其卓越的性能而备受瞩目。其中,Kafka的消息压缩机制是一项非常重要的特性,它就像是一个高效的“压缩包”,在不损失数据内容的前提下,有效减少数据的
- 关于AI OS那点事
大囚长
科普天地大模型人工智能
AIOS(人工智能操作系统)作为面向智能时代的操作系统,其功能定位和架构设计与传统操作系统(如Linux、Windows、iOS等)存在显著差异。一、AIOS需具备的核心功能智能体全生命周期管理智能体调度与并发:需支持多智能体任务的优先级排序、资源分配及并发执行,例如通过轮询调度或动态优先级算法优化LLM资源利用率。上下文感知与切换:通过上下文管理器实现智能体交互状态的快照保存与恢复,解决LLM生
- 贪心算法之分发饼干
努 力 小 子
#刷题(简单难度)#贪心算法
假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。对每个孩子i,都有一个胃口值gi,这是能让孩子们满足胃口的饼干的最小尺寸;并且每块饼干j,都有一个尺寸sj。如果sj>=gi,我们可以将这个饼干j分配给孩子i,这个孩子会得到满足。你的目标是尽可能满足越多数量的孩子,并输出这个最大数值。注意:你可以假设胃口值为正。一个小朋友最多只能拥有一块饼干。示例1:输入:[1
- JAVA刷Leecode-贪心算法-分配问题-分发饼干
搬砖的水鱼
leetcode算法javapythonleetcode贪心算法
JAVA刷Leecode-贪心算法算法思想分配问题-分发饼干(135,hard)算法思想采用贪心的策略,保证每次操作都是局部最优解,从而最终的结果是全局最优。贪心算法不是对所有问题都能得到整体最优解,选择的贪心策略必须具有无后效性,即某个状态以前的过程不会影响以后的状态,只和当前的状态相关。包括分配问题(455,135)和区间问题(435);练习:605,452,763,122,406。分配问题-
- 【贪心算法】1、分发饼干
念奕玥
【Java】数据结构与算法javaleetcode贪心算法
贪心算法或贪心思想采用贪心的策略,保证每次操作都是局部最优的,从而使最后得到的结果是全局最优的。可用于解决分配问题e.g.leetcode455分发饼干解题思路:目标:尽可能满足越多数量的孩子。根据目标,可以容易想到,先去满足胃口值小的孩子。为了尽量使饼干可以满足更多的孩子,所以要把饼干尺寸大于等于孩子胃口值的饼干中挑尺寸最小的饼干给孩子。满足了这个孩子之后,再采取同样的策略去考虑剩下的孩子,直到
- 流浪地球 - 华为OD机试真题(E卷、C++)
什码情况
华为odc++算法数据结构面试机试
针对刷题难,效率慢,我们提供一对一算法辅导,针对个人情况定制化的提高计划(全称1V1效率更高)。有兴趣的同学可以扫码添加我们的微信(code5bug)了解,免费试课一下。题目描述流浪地球计划在赤道上均匀部署了N个转向发动机,按位置顺序编号为0~N。1).初始状态下所有的发动机都是未启动状态;2).发动机启动的方式分为”手动启动”和”关联启动”两种方式;3).如果在时刻1一个发动机被启动,下一个时刻
- Yolo系列之Yolo的基本理解
是十一月末
YOLOpython开发语言yolo
YOLO的基本理解目录YOLO的基本理解1YOLO1.1概念1.2算法2单、多阶段对比2.1FLOPs和FPS2.2one-stage单阶段2.3two-stage两阶段1YOLO1.1概念YOLO(YouOnlyLookOnce)是一种基于深度学习的目标检测算法,由JosephRedmon等人于2016年提出。它的核心思想是将目标检测问题转化为一个回归问题,通过一个神经网络直接预测目标的类别和位
- 贪心算法-455分发饼干
工大一只猿
贪心算法算法
classSolution{public:intfindContentChildren(vector&g,vector&s){sort(g.begin(),g.end());sort(s.begin(),s.end());intcount=0;inti=g.size()-1;intj=s.size()-1;for(i;i>=0;i--){if(j>=0&&s[j]>=g[i]){j--;count
- 455. 分发饼干(贪心算法)
穿过漫长林径
LeetCode
455.分发饼干题目描述:有一群孩子和一堆饼干,每个孩子有一个饥饿度,每个饼干都有一个大小。每个孩子只能吃一个饼干,且只有饼干的大小不小于孩子的饥饿度时,这个孩子才能吃饱。求解最多有多少孩子可以吃饱。示例1:输入:g=[1,2,3],s=[1,1]输出:1解释:你有三个孩子和两块小饼干,3个孩子的胃口值分别是:1,2,3。虽然你有两块小饼干,由于他们的尺寸都是1,你只能让胃口值是1的孩子满足。所以
- 贪心算法:分发饼干
AlphaFinance
求职面试
假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。对每个孩子i,都有一个胃口值g[i],这是能让孩子们满足胃口的饼干的最小尺寸;并且每块饼干j,都有一个尺寸s[j]。如果s[j]>=g[i],我们可以将这个饼干j分配给孩子i,这个孩子会得到满足。你的目标是尽可能满足越多数量的孩子,并输出这个最大数值。示例1:输入:g=[1,2,3],s=[1,1]输出:1解释:
- 2021-11-12 455. 分发饼干(贪心算法)
TABE_
贪心算法leetcode算法
注:题目:假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。对每个孩子i,都有一个胃口值g[i],这是能让孩子们满足胃口的饼干的最小尺寸;并且每块饼干j,都有一个尺寸s[j]。如果s[j]>=g[i],我们可以将这个饼干j分配给孩子i,这个孩子会得到满足。你的目标是尽可能满足越多数量的孩子,并输出这个最大数值。示例1:输入:g=[1,2,3],s=[1,1]输出
- Nginx负载均衡
510888780
nginx应用服务器
Nginx负载均衡一些基础知识:
nginx 的 upstream目前支持 4 种方式的分配
1)、轮询(默认)
每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除。
2)、weight
指定轮询几率,weight和访问比率成正比
- RedHat 6.4 安装 rabbitmq
bylijinnan
erlangrabbitmqredhat
在 linux 下安装软件就是折腾,首先是测试机不能上外网要找运维开通,开通后发现测试机的 yum 不能使用于是又要配置 yum 源,最后安装 rabbitmq 时也尝试了两种方法最后才安装成功
机器版本:
[root@redhat1 rabbitmq]# lsb_release
LSB Version: :base-4.0-amd64:base-4.0-noarch:core
- FilenameUtils工具类
eksliang
FilenameUtilscommon-io
转载请出自出处:http://eksliang.iteye.com/blog/2217081 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- xml文件解析SAX
不懂事的小屁孩
xml
xml文件解析:xml文件解析有四种方式,
1.DOM生成和解析XML文档(SAX是基于事件流的解析)
2.SAX生成和解析XML文档(基于XML文档树结构的解析)
3.DOM4J生成和解析XML文档
4.JDOM生成和解析XML
本文章用第一种方法进行解析,使用android常用的DefaultHandler
import org.xml.sax.Attributes;
- 通过定时任务执行mysql的定期删除和新建分区,此处是按日分区
酷的飞上天空
mysql
使用python脚本作为命令脚本,linux的定时任务来每天定时执行
#!/usr/bin/python
# -*- coding: utf8 -*-
import pymysql
import datetime
import calendar
#要分区的表
table_name = 'my_table'
#连接数据库的信息
host,user,passwd,db =
- 如何搭建数据湖架构?听听专家的意见
蓝儿唯美
架构
Edo Interactive在几年前遇到一个大问题:公司使用交易数据来帮助零售商和餐馆进行个性化促销,但其数据仓库没有足够时间去处理所有的信用卡和借记卡交易数据
“我们要花费27小时来处理每日的数据量,”Edo主管基础设施和信息系统的高级副总裁Tim Garnto说道:“所以在2013年,我们放弃了现有的基于PostgreSQL的关系型数据库系统,使用了Hadoop集群作为公司的数
- spring学习——控制反转与依赖注入
a-john
spring
控制反转(Inversion of Control,英文缩写为IoC)是一个重要的面向对象编程的法则来削减计算机程序的耦合问题,也是轻量级的Spring框架的核心。 控制反转一般分为两种类型,依赖注入(Dependency Injection,简称DI)和依赖查找(Dependency Lookup)。依赖注入应用比较广泛。
- 用spool+unixshell生成文本文件的方法
aijuans
xshell
例如我们把scott.dept表生成文本文件的语句写成dept.sql,内容如下:
set pages 50000;
set lines 200;
set trims on;
set heading off;
spool /oracle_backup/log/test/dept.lst;
select deptno||','||dname||','||loc
- 1、基础--名词解析(OOA/OOD/OOP)
asia007
学习基础知识
OOA:Object-Oriented Analysis(面向对象分析方法)
是在一个系统的开发过程中进行了系统业务调查以后,按照面向对象的思想来分析问题。OOA与结构化分析有较大的区别。OOA所强调的是在系统调查资料的基础上,针对OO方法所需要的素材进行的归类分析和整理,而不是对管理业务现状和方法的分析。
OOA(面向对象的分析)模型由5个层次(主题层、对象类层、结构层、属性层和服务层)
- 浅谈java转成json编码格式技术
百合不是茶
json编码java转成json编码
json编码;是一个轻量级的数据存储和传输的语言
在java中需要引入json相关的包,引包方式在工程的lib下就可以了
JSON与JAVA数据的转换(JSON 即 JavaScript Object Natation,它是一种轻量级的数据交换格式,非
常适合于服务器与 JavaScript 之间的数据的交
- web.xml之Spring配置(基于Spring+Struts+Ibatis)
bijian1013
javaweb.xmlSSIspring配置
指定Spring配置文件位置
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>
/WEB-INF/spring-dao-bean.xml,/WEB-INF/spring-resources.xml,
/WEB-INF/
- Installing SonarQube(Fail to download libraries from server)
sunjing
InstallSonar
1. Download and unzip the SonarQube distribution
2. Starting the Web Server
The default port is "9000" and the context path is "/". These values can be changed in &l
- 【MongoDB学习笔记十一】Mongo副本集基本的增删查
bit1129
mongodb
一、创建复本集
假设mongod,mongo已经配置在系统路径变量上,启动三个命令行窗口,分别执行如下命令:
mongod --port 27017 --dbpath data1 --replSet rs0
mongod --port 27018 --dbpath data2 --replSet rs0
mongod --port 27019 -
- Anychart图表系列二之执行Flash和HTML5渲染
白糖_
Flash
今天介绍Anychart的Flash和HTML5渲染功能
HTML5
Anychart从6.0第一个版本起,已经逐渐开始支持各种图的HTML5渲染效果了,也就是说即使你没有安装Flash插件,只要浏览器支持HTML5,也能看到Anychart的图形(不过这些是需要做一些配置的)。
这里要提醒下大家,Anychart6.0版本对HTML5的支持还不算很成熟,目前还处于
- Laravel版本更新异常4.2.8-> 4.2.9 Declaration of ... CompilerEngine ... should be compa
bozch
laravel
昨天在为了把laravel升级到最新的版本,突然之间就出现了如下错误:
ErrorException thrown with message "Declaration of Illuminate\View\Engines\CompilerEngine::handleViewException() should be compatible with Illuminate\View\Eng
- 编程之美-NIM游戏分析-石头总数为奇数时如何保证先动手者必胜
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class Nim {
/**编程之美 NIM游戏分析
问题:
有N块石头和两个玩家A和B,玩家A先将石头随机分成若干堆,然后按照BABA...的顺序不断轮流取石头,
能将剩下的石头一次取光的玩家获胜,每次取石头时,每个玩家只能从若干堆石头中任选一堆,
- lunce创建索引及简单查询
chengxuyuancsdn
查询创建索引lunce
import java.io.File;
import java.io.IOException;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Docume
- [IT与投资]坚持独立自主的研究核心技术
comsci
it
和别人合作开发某项产品....如果互相之间的技术水平不同,那么这种合作很难进行,一般都会成为强者控制弱者的方法和手段.....
所以弱者,在遇到技术难题的时候,最好不要一开始就去寻求强者的帮助,因为在我们这颗星球上,生物都有一种控制其
- flashback transaction闪回事务查询
daizj
oraclesql闪回事务
闪回事务查询有别于闪回查询的特点有以下3个:
(1)其正常工作不但需要利用撤销数据,还需要事先启用最小补充日志。
(2)返回的结果不是以前的“旧”数据,而是能够将当前数据修改为以前的样子的撤销SQL(Undo SQL)语句。
(3)集中地在名为flashback_transaction_query表上查询,而不是在各个表上通过“as of”或“vers
- Java I/O之FilenameFilter类列举出指定路径下某个扩展名的文件
游其是你
FilenameFilter
这是一个FilenameFilter类用法的例子,实现的列举出“c:\\folder“路径下所有以“.jpg”扩展名的文件。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
- C语言学习五函数,函数的前置声明以及如何在软件开发中合理的设计函数来解决实际问题
dcj3sjt126com
c
# include <stdio.h>
int f(void) //括号中的void表示该函数不能接受数据,int表示返回的类型为int类型
{
return 10; //向主调函数返回10
}
void g(void) //函数名前面的void表示该函数没有返回值
{
//return 10; //error 与第8行行首的void相矛盾
}
in
- 今天在测试环境使用yum安装,遇到一个问题: Error: Cannot retrieve metalink for repository: epel. Pl
dcj3sjt126com
centos
今天在测试环境使用yum安装,遇到一个问题:
Error: Cannot retrieve metalink for repository: epel. Please verify its path and try again
处理很简单,修改文件“/etc/yum.repos.d/epel.repo”, 将baseurl的注释取消, mirrorlist注释掉。即可。
&n
- 单例模式
shuizhaosi888
单例模式
单例模式 懒汉式
public class RunMain {
/**
* 私有构造
*/
private RunMain() {
}
/**
* 内部类,用于占位,只有
*/
private static class SingletonRunMain {
priv
- Spring Security(09)——Filter
234390216
Spring Security
Filter
目录
1.1 Filter顺序
1.2 添加Filter到FilterChain
1.3 DelegatingFilterProxy
1.4 FilterChainProxy
1.5
- 公司项目NODEJS实践0.1
逐行分析JS源代码
mongodbnginxubuntunodejs
一、前言
前端如何独立用nodeJs实现一个简单的注册、登录功能,是不是只用nodejs+sql就可以了?其实是可以实现,但离实际应用还有距离,那要怎么做才是实际可用的。
网上有很多nod
- java.lang.Math
liuhaibo_ljf
javaMathlang
System.out.println(Math.PI);
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1));
System.out.println(Math.abs(111111111));
System.out.println(Mat
- linux下时间同步
nonobaba
ntp
今天在linux下做hbase集群的时候,发现hmaster启动成功了,但是用hbase命令进入shell的时候报了一个错误 PleaseHoldException: Master is initializing,查看了日志,大致意思是说master和slave时间不同步,没办法,只好找一种手动同步一下,后来发现一共部署了10来台机器,手动同步偏差又比较大,所以还是从网上找现成的解决方
- ZooKeeper3.4.6的集群部署
roadrunners
zookeeper集群部署
ZooKeeper是Apache的一个开源项目,在分布式服务中应用比较广泛。它主要用来解决分布式应用中经常遇到的一些数据管理问题,如:统一命名服务、状态同步、集群管理、配置文件管理、同步锁、队列等。这里主要讲集群中ZooKeeper的部署。
1、准备工作
我们准备3台机器做ZooKeeper集群,分别在3台机器上创建ZooKeeper需要的目录。
数据存储目录
- Java高效读取大文件
tomcat_oracle
java
读取文件行的标准方式是在内存中读取,Guava 和Apache Commons IO都提供了如下所示快速读取文件行的方法: Files.readLines(new File(path), Charsets.UTF_8); FileUtils.readLines(new File(path)); 这种方法带来的问题是文件的所有行都被存放在内存中,当文件足够大时很快就会导致
- 微信支付api返回的xml转换为Map的方法
xu3508620
xmlmap微信api
举例如下:
<xml>
<return_code><![CDATA[SUCCESS]]></return_code>
<return_msg><![CDATA[OK]]></return_msg>
<appid><