扩展欧几里得算法 hdu 1576 A/B

 

^^^转载请注明出处,谢谢合作O(∩_∩)O~

A/B 扩展欧几里得算法

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)


Problem Description
要求(A/B)%9973,但由于A很大,我们只给出n(n=A%9973)(我们给定的A必能被B整除,且gcd(B,9973) = 1)。
 

 

Input
数据的第一行是一个T,表示有T组数据。
每组数据有两个数n(0 <= n < 9973)和B(1 <= B <= 10^9)。
 

 

Output
对应每组数据输出(A/B)%9973。
 

 

Sample Input
2
1000 53
87 123456789
 

 

Sample Output
7922
6060
 解:
因为A%9973=n,所以令A=n+9973*y;再设A/B=x,则得到B*x-9973*Y=n;因为gcd(B,9973)=1;所以B,9973互质,所以用扩展欧几里得算法(模板)即可;
__int64 Extended_Euclid(__int64 a,__int64 b,__int64& x,__int64& Y)

{

    if(b==0)

    {

        x=1;

        y=0;

        return a;

    }

    __int64 r=Extended_Euclid(b,a%b,x,y)

    __int64 temp=x;x=y;y=t-a/b*y;

    return r; //r为a,b的最大公约数

}
注意该模板只能在C++ 中使用,因为模板中使用了引用‘&’;
 

(注意:__ int64(两个下划线):标准的64位int型           _int64(一个下划线):VC++里面的)

扩展欧几里德算法:
  扩展欧几里德算法是用来在已知的非负整数(否则需要将式子变形,如求5x-13y=1的解则变形为5x+(-13y)=1,然后再对结果做处理即可a, b求解一组x,y使得ax+by = Gcd(a, b) =d(解一定存在,根据数论中的相关定理)扩展欧几里德常用在求解模线性方程及方程组中。

下面是一个使用C++的实现:
  int exGcd(int a, int b, int &x, int &y)
  {
  if(b == 0)
  {
  x = 1;
  y = 0;
  return a; ---很难找出一个这么实现的价值,因为扩展欧几里得还有更大的用途;个人认为定义全局数组更好,不用return r。
  }
  int r = exGcd(b, a % b, x, y);
  int t = x;
  x = y;
  y = t - a / b * y;
  return r;
  }
使用扩展欧几里德算法解决不定方程的办法:
  对于不定整数方程pa+qb=c,若 c mod Gcd(a, b)=0,则该方程存在整数解,否则不存在整数解。
  上面已经列出找一个整数解的方法,在找到p * a+q * b = Gcd(a, b)的一组解p0,q0后,可以证明p0为0附近的最小解,*p * a+q * b = Gcd(a, b)的其他整数解满足:
  p = p0 + b/Gcd(a, b) * t
  q = q0 - a/Gcd(a, b) * t(其中t为任意整数,p,q中的t相同)
  至于pa+qb=c的整数解,只需将p * a+q * b = Gcd(a, b)的每个解乘上 c/Gcd(a, b) 即可
  在找到p * a+q * b = Gcd(a, b)的一组解p0,q0后,应该是
  得到p * a+q * b = c的一组解p1 = p0*(c/Gcd(a,b)),q1 = q0*(c/Gcd(a,b)),p * a+q * b = c的其他整数解满足:
  p = p1 + b/Gcd(a, b) * t
  q = q1 - a/Gcd(a, b) * t(其中t为任意整数,p,q中的t相同)
  p 、q就是p * a+q * b = c的所有整数解。

 

更多参考:
 
代码:
// Note:Your choice is C++ IDE
#include <iostream>
using namespace std;
#define k 9973
int uex(int a,int b,int &x,int &y)
{
int r;
int t;
if(b==0)
{
x=1;
y=0;
return a;
}
r=uex(b,a%b,x,y);
t=x;
x=y;
y=t-a/b*y;
return r;
}
int main()
{
int T,t,n,b,x,y;
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&b);
uex(b,k,x,y);
x*=n;
if(x<0)
{
t=-x;
t=t%k;
x=k-t; //或者不用t变量 直接x=k-(-x)%k;或者用while(x<0){x+=k/1;},不过不推荐使用,因为可能会超时!最好用 x=(x%k+k)%k即可,if语句也不用了;
}
printf("%d\n",x%k);
}
return 0;
}

你可能感兴趣的:(HDU)