2022年3月24日
大部分内容转载自南方科技大学梁修雨教授地下水水文学讲课PPT
∂ ∂ x ( K x ∂ h ∂ x ) + ∂ ∂ y ( K y ∂ h ∂ y ) + ∂ ∂ z ( K z ∂ h ∂ z ) + R ( x , y , z , t ) = S s ∂ h ∂ t \frac{\partial}{\partial x}(K_x\frac{\partial h}{\partial x})+\frac{\partial}{\partial y}(K_y\frac{\partial h}{\partial y})+\frac{\partial}{\partial z}(K_z\frac{\partial h}{\partial z})+R(x,y,z,t)=S_s\frac{\partial h}{\partial t} ∂x∂(Kx∂x∂h)+∂y∂(Ky∂y∂h)+∂z∂(Kz∂z∂h)+R(x,y,z,t)=Ss∂t∂h
for confined aquifer 2-D
∂ ∂ x ( T x ∂ h ∂ x ) + ∂ ∂ y ( T y ∂ h ∂ y ) = S ∂ h ∂ t \frac{\partial}{\partial x}(T_x\frac{\partial h}{\partial x})+\frac{\partial}{\partial y}(T_y\frac{\partial h}{\partial y})=S\frac{\partial h}{\partial t} ∂x∂(Tx∂x∂h)+∂y∂(Ty∂y∂h)=S∂t∂h
for leaky confined aquifer越流承压含水层
∂ ∂ x ( T x ∂ h ∂ x ) + ∂ ∂ y ( T y ∂ h ∂ y ) + q ′ = S ∂ h ∂ t \frac{\partial}{\partial x}(T_x\frac{\partial h}{\partial x})+\frac{\partial}{\partial y}(T_y\frac{\partial h}{\partial y})+q'=S\frac{\partial h}{\partial t} ∂x∂(Tx∂x∂h)+∂y∂(Ty∂y∂h)+q′=S∂t∂h
According Darcy’s law
q ′ = k ′ i = k ′ h 0 − h b ′ , i f h 0 > h q'=k'i=k'\frac{h_0-h}{b'}, if h_0>h q′=k′i=k′b′h0−h,ifh0>h
∂ ∂ x ( K x ∂ h ∂ x ) + ∂ ∂ y ( K y ∂ h ∂ y ) + ∂ ∂ z ( K z ∂ h ∂ z ) = S s ∂ h ∂ t \frac{\partial}{\partial x}(K_x\frac{\partial h}{\partial x})+\frac{\partial}{\partial y}(K_y\frac{\partial h}{\partial y})+\frac{\partial}{\partial z}(K_z\frac{\partial h}{\partial z})=S_s\frac{\partial h}{\partial t} ∂x∂(Kx∂x∂h)+∂y∂(Ky∂y∂h)+∂z∂(Kz∂z∂h)=Ss∂t∂h
Boundary condition
l e f t : K x ∂ h ∂ x = 0 , x = 0 r i g h t : h = h ( x , t ) , x = L b u t t o m : K z ∂ h ∂ z = 0 left: K_x\frac{\partial h}{\partial x}=0, x=0\\right: h=h(x,t), x=L\\buttom:K_z\frac{\partial h}{\partial z}=0 left:Kx∂x∂h=0,x=0right:h=h(x,t),x=Lbuttom:Kz∂z∂h=0
潜水方程简化:Dupuit assumption(1863).
h就是水位,表示潜水含水层的厚度,是随时间和空间变化的
∂ ∂ x ( h ∂ h ∂ x ) + ∂ ∂ y ( h ∂ h ∂ y ) + W ( t ) = S y ∂ h ∂ t \frac{\partial }{\partial x}(h\frac{\partial h}{\partial x})+\frac{\partial }{\partial y}(h\frac{\partial h}{\partial y})+W(t)=S_y\frac{\partial h}{\partial t} ∂x∂(h∂x∂h)+∂y∂(h∂y∂h)+W(t)=Sy∂t∂h
Reservoir —River
如果从左到右污染流到河流的时间是多少–要计算seepage velocity
使用一维承压稳定流模型
使用一维潜水运动方程–Boussineq equation ,无补给,无源汇项
steady state flow in an confined aquifer
** steady state flow in an unconfined aquifer**
2. math model
d d x ( h d l h d x ) = 0 h ( 0 ) = h 1 h ( L ) = h 2 \frac{d}{dx}(h\frac{dl h}{dx})=0\\h(0)=h1\\h(L)=h2 dxd(hdxdlh)=0h(0)=h1h(L)=h2
将结果带回到边界条件,可以用以检验解的正确性。
steady state flow in an unconfined aquifer with a uniform recharge
3. math model
K d d x ( h d l h d x ) + w = 0 h ( 0 ) = h 1 h ( L ) = h 2 K\frac{d}{dx}(h\frac{dl h}{dx})+w=0\\h(0)=h1\\h(L)=h2 Kdxd(hdxdlh)+w=0h(0)=h1h(L)=h2
分水岭位置的确定:在中间没有水流经过,水几部向左也不向右。在这一点Q=0, 则可以解出x
x所在的垂线即为分水岭。
如果分水岭位置小于0,则河间地块无分水岭,
分水岭是由降雨补给产生的,长期没有降雨或非饱和带特别厚,则地下水无补给,则没有分水岭了。
seepage veloctiy=Darcy velocity/effective porous
v s = v d n e v_s=\frac{v_d}{n_e} vs=nevd
v s 为 渗 流 速 度 , v d 为 达 西 流 速 , n e 为 有 效 孔 隙 度 v_s为渗流速度,v_d为达西流速,n_e为有效孔隙度 vs为渗流速度,vd为达西流速,ne为有效孔隙度