- 高斯Splatting:3D 重建与新视图合成的综述
三谷秋水
人工智能机器学习计算机视觉计算机视觉人工智能深度学习
24年5月来自挪威大学的论文“GaussianSplatting:3DReconstructionandNovelViewSynthesis,aReview”。基于图像的3D重建是一项具有挑战性的任务,涉及从一组输入图像中推断出目标或场景的3D形状。基于学习的方法因其直接估计3D形状的能力而备受关注。这篇论文重点介绍3D重建的最新技术,包括生成新的、未见过的视图。高斯Splatting方法的最新发
- RoboVQA:机器人多模态长范围推理
三谷秋水
计算机视觉智能体大模型机器人人工智能机器学习计算机视觉深度学习语言模型
23年11月来自GoogleDeepmind的论文“RoboVQA:MultimodalLong-HorizonReasoningforRobotics”。本文提出一种可扩展、自下而上且本质多样化的数据收集方案,该方案可用于长期和中期的高级推理,与传统的狭窄自上而下的逐步收集相比,其吞吐量提高2.2倍。通过在3栋办公楼内执行任何用户请求并使用多种具身(机器人、人类、带抓取工具的人类)来收集真实数据
- 卡尔曼滤波算法c语言stm32,卡尔曼滤波算法及C语言实现_源代码
weixin_39643255
卡尔曼滤波算法c语言stm32
a往南向北2019-01-1620:39:2011340收藏111分类专栏:C语言嵌入式文章标签:卡尔曼滤波C代码卡尔曼滤波理论很容易就可以在MATLAB软件环境下实现,但是,实际的硬件板子上还是需要C语言,当然可以自动代码生成,还有一种就是直接手动编写C语言。1.前言在google上搜索卡尔曼滤波,很容易找到以下这个帖子:http://blog.csdn.net/lanbing510/artic
- 哪个AI论文生成助手好用?5 款AI论文工具深度评测
AI论文图鉴
人工智能
2025年,AI论文写作工具如雨后春笋般涌现,迅速在学术圈走红。身为一个常被论文写作困扰的“懒人”,我对这些工具的实际表现充满好奇。于是,我亲测了五款当下国内外最热门的AI论文写作助手,从功能、交互、写作水平、写作效率等维度进行全面评测,结果令人惊喜。相信这篇文章能为仍在观望的你带来新的启发与认识。这次测评,我挑选了五款极具代表性的AI工具,以“基于大语言模型的医疗诊断研究”为主题,看它们如何大显
- 06 - gldas水文模型数据处理 - 下载、matlab读取
咋(za)说
论文笔记笔记经验分享
gldas水文模型数据处理-下载、matlab读取0.引言1.GLDAS水文数据介绍2.GLDAS数据下载3.GLDAS数据读取的matlab程序0.引言 根据水量平衡方程,陆地水储量变化(Δtws\DeltatwsΔtws
- matlab spmd,matlab并行计算命令
其实我是老莫
matlabspmd
1.matlab仿真模型怎么并行计算以单台双核计算机为例。首先打开MATLAB命令窗口,输入matlabpoolopen就OK了。这样,就相当于将一台计算机的两个核心,当做两台机器用啦。接下来是编程序实现的方法。MATLAB并行计算的模式有几种?主要是两种:parfor模式和spmd模式。两种模式的应用都很简单。第一个中,parfor其实就是parallel+for简化而来,顾名思义啊,就是把原来
- 知识蒸馏论文精选——《Graph-Free Knowledge Distillation for Graph Neural Networks 》
宇直不会放弃
GKD-Outputlayer人工智能数据挖掘机器学习深度学习神经网络cnnpytorch
(GFKD)无图知识蒸馏《Graph-FreeKnowledgeDistillationforGraphNeuralNetworks》2021作者是XiangDeng和ZhongfeiZhang,来自纽约州立大学宾汉姆顿分校论文地址见文末摘要知识蒸馏(KnowledgeDistillation,KD)通过强制学生网络模仿在训练数据上预训练老师网络的输出,从而将知识从老师网络转移到学生网络。然而,在
- LWC-KD:图结构感知的推荐系统增量学习对比知识蒸馏
宇直不会放弃
GKD-Middlelayer人工智能pythonchatgptgpu算力深度学习机器学习神经网络
LWC-KD:图结构感知的推荐系统增量学习对比知识蒸馏《GraphStructureAwareContrastiveKnowledgeDistillationforIncrementalLearninginRecommenderSystems》2021作者是YueningWang、YingxueZhang和MarkCoates论文地址:https://dl.acm.org/doi/10.1145/
- 【氮化镓】用于低压射频电源的具有80.4% PAE的Si基E-Mode AlN/GaN HEMT
北行黄金橘
氮化镓器件可靠性GaN科技氮化镓GaN HEMTPAE
引言本文是一篇关于增强型(E-mode)AlN/GaN高电子迁移率晶体管(HEMTs)的研究论文,晶体管是在硅衬底上制造的,并在3.6GHz频率下展示了80.4%的峰值功率附加效率(PAE)。文章首先介绍了GaN器件在微波和毫米波功率放大器中的应用,特别是在雷达、卫星通信和民用移动通信系统中。这些应用对器件的性能要求极高,包括高功率密度、高效率和低供电电压。文章指出,与耗尽模式(D-mode)相比
- 基于双向长短期记忆神经网络结合多头注意力机制(BiLSTM-Multihead-Attention)的单变量时序预测
机器学习和优化算法
多头注意力机制深度学习神经网络人工智能机器学习单变量时序预测BiLSTM多头注意力机制
目录1、代码简介2、代码运行结果展示3、代码获取1、代码简介基于双向长短期记忆神经网络结合多头注意力机制(BiLSTM-Multihead-Attention)的单变量时序预测(单输入单输出)1.程序已经调试好,无需更改代码替换数据集即可运行!!!数据格式为excel!2.需要其他算法的都可以定制!注:1️⃣、运行环境要求MATLAB版本为2023b及其以上。【没有我赠送】2️⃣、评价指标包括:R
- 【RAG 论文】Program-of-Thoughts(PoT)提示:让 LLM 生成 Python 代码来解决复杂的数字计算问题
yubinCloud
LLMResearch自然语言处理人工智能语言模型算法
论文:ProgramofThoughtsPrompting:DisentanglingComputationfromReasoningforNumericalReasoningTasks⭐⭐⭐⭐TMLR2023Code:Program-of-Thoughts|GitHub论文速读文章提出了PoTPrompting方法,PoT可以看作是CoT(Chain-of-Thoughts)的改进,该方法通过生
- LLM论文笔记 20: How to think step-by-step: A mechanistic understanding of chain-of-thought reasoning
Zhouqi_Hua
大模型论文阅读人工智能chatgpt论文阅读机器学习深度学习语言模型
Arxiv日期:2024.5.16机构:IIT关键词CoT本质LLM推理本质核心结论1.CoT推理的功能组件尽管不同阶段的推理任务具有不同的推理需求,模型内部的功能组件几乎是相同的(共享而非独享)不同的神经算法实际上是由类似归纳头(inductionheads)等机制组合而成2.注意力机制中的信息流动attentionheads在不同的模型层之间传递信息,特别是当它们涉及到本体论相关(ontolo
- EDPose:探讨端到端的实时多人姿态估计
烧技湾
AI&ComputerVisionHPE人体姿态估计端到端检测
作者:曾爱玲(港中文博士,现已入职腾讯)单位:IDEA(深圳数字经济研究院)源码:github/ED-Pose该篇论文取得效果如下:这篇文章的优势在于:在复杂的多人场景下能够取得不错的性能提升,虽然在COCO等数据集上的提升不明显。这种端到端的方法,优势在于检测到人体是检测到关键点的一个保证。目录摘要一、介绍二、相关工作2.1.单阶段多人姿态估计2.2检测变压器:三、重新思考单阶段多人姿态估计3.
- 【2020蓝桥杯省赛“蛇形填数“python实现】纯暴力规律求解
自由之翼explore
蓝桥杯python职场和发展算法
原题如下在网上找的python解答都让我云里雾里的,无奈自己太笨,于是乎开始寻找这个问题的简单规律,最后倒确实找到了:(我先用MatLab生成了一个蛇形矩阵,这段代码是在CSDN上找的)%Zigzagscanningn=8;a=zeros(n);%初始化a(1,1)=1;i=1;%行j=1;%列f=0;%标志位1表示行增加列减小k=2;%循环赋值从左上角开始循环while(kn^2)break;e
- 技术人实测 | 如何用AI工具2分钟突破知网AIGC检测线
LL06210721
人工智能AIGC
最近在GitHub发现个有意思的本地化算法工具,其核心是通过对抗式语义重组技术重构文本逻辑链。测试时发现:将GPT生成的论文导入后,系统会保留原始参考文献格式,同时用学术同义词替换引擎重写表达结构。实测数据:某985实验室的AI生成稿经处理,知网AIGC率从38%→9.7%(检测截图已脱敏),维普重复率从24%→8.3%。工具最实用的三个细节:保留公式编号和图表位置不变支持LaTeX源码级修改追踪
- 用MATLAB打造浪漫3D粒子心脏:代码解析与动态可视
爱玩三国杀的界徐盛
matlab3d开发语言
一、效果预览本文我们将用MATLAB实现一个令人惊艳的3D动态可视化效果:旋转的粒子心脏悬浮在星空背景中,粉紫色的心形粒子群与不同层次的旋转星辰交相辉映。这个效果结合了三维曲面生成、粒子系统、坐标变换等多项技术,最终呈现出一个充满科技感的动态艺术作品。二、代码解析2.1颜色配置模块col=@(n)repmat([255,158,196]./255,[n,1])+repmat([-39,-81,-5
- 基于支持向量数据描述 (SVDD) 进行多类分类(Matlab代码实现)
荔枝科研社
分类matlab人工智能
个人主页:研学社的博客欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录1概述一、引言二、SVDD算法原理三、基于SVDD的多类分类方法四、讨论与展望五、结论2运行结果3参考文献4Matlab代码实现1概述使用支持向量数据描述(SVDD)进行多类分类。矩阵代码。基于SVDD的多类分类在此MATLAB脚本中呈现。多类
- Word2Vec 模型 PyTorch 实现并复现论文中的数据集
Illusionna.
word2vecpytorch人工智能算法自然语言处理nlpmatplotlib
详细注解链接:https://www.orzzz.net/directory/codes/Word2Vec/index.html欢迎咨询!
- 基于信息间隙决策理论的碳捕集电厂调度(Matlab代码实现)
砌墙_2301
matlab算法人工智能
个人主页欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录1概述基于信息间隙决策理论(IGDT)的碳捕集电厂调度研究综述一、信息间隙决策理论(IGDT)的定义与核心原理二、碳捕集电厂调度的主要研究方向与挑战三、IGDT在碳捕集电厂调度中的模型框架四、现有调度方法的局限性及IGDT的改进五、实证研究案例分析六、总结与
- 基于BMO磁性细菌优化的WSN网络最优节点部署算法matlab仿真
软件算法开发
MATLAB程序开发#网络仿真matlabBMO磁性细菌优化WSN网络最优节点部署
目录1.程序功能描述2.测试软件版本以及运行结果展示3.核心程序4.本算法原理5.完整程序1.程序功能描述无线传感器网络(WirelessSensorNetwork,WSN)由大量分布式传感器节点组成,用于监测物理或环境状况。节点部署是WSN的关键问题,合理的部署可以提高网络的覆盖范围、连通性和能量效率。磁性细菌是一类能够感知地球磁场并沿磁场方向游动的微生物。在BMO算法中,模拟磁性细菌的这种趋磁
- MATLAB控制函数测试要点剖析
蚂蚁质量
其他matlab深度学习
一、功能准确性检验基础功能核验针对常用控制函数,像用于传递函数建模的tf、构建状态空间模型的ss,以及开展阶跃响应分析的step等,必须确认其能精准执行基础操作。以tf函数为例,在输入分子与分母系数后,理应生成准确无误的传递函数模型;而运用step函数时,则应能够精准计算并绘制出系统的阶跃响应曲线,如实反映系统对阶跃输入的动态响应过程。复杂功能测试对于高级控制函数,例如线性二次调节器lqr、模型预
- word导出高清PDF
linff911
pdf
参考:解决PPT导出PDF分辨率过低问题_ppt导出pdf清晰度不高怎么解决-CSDN博客之前被论文折磨的发疯,遇到了点问题,遂写此篇,参考上面这位大神的文章,顺利解决了问题,插个眼留给自己用首先我的电脑上有FoxitPDF阅读器,没有的话不知道能不能行,另外本篇是指word里的图片就比较高清,但是导出pdf变模糊的情况;步骤指南1.选择FoxitPDF打印机在Word中,点击左上角文件选项:选择
- 在MATLAB环境中,对矩阵拼接(Matrix Concatenation)的测试
蚂蚁质量
软件测试matlab矩阵
在MATLAB环境中,对矩阵拼接(MatrixConcatenation)的正确性与鲁棒性开展测试时,需要依据不同的拼接场景精心设计测试用例,全面验证矩阵维度、数据顺序、边界条件以及异常处理等关键方面。以下是详尽的测试方法与具体示例:基础功能测试(1)水平拼接([A,B]或horzcat)测试目的:确认在列方向进行拼接后,所得矩阵的尺寸是否准确无误,以及数据排列顺序是否符合预期。测试代码:matl
- Flask 小册子简介
AWS加油站
Flaskrestful小册子flaskpython后端
这是一个Flaskrestful讲解的小册子,涵盖了RESTfulAPI的概念、选择Flask的原因以及小册子的目标和结构。我会尽量写得详细,帮助你更好地理解。1.简介1.1什么是RESTfulAPI?1.1.1REST的概念REST(RepresentationalStateTransfer,表述性状态转移)是一种软件架构风格,由RoyFielding在2000年的博士论文中提出。它定义了一组约
- 论文阅读笔记——Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware
寻丶幽风
论文阅读笔记论文阅读笔记人工智能深度学习机器人
ALOHA论文ALOHA解决了策略中的错误可能随时间累积,且人类演示可能是非平稳的,提出了ACT(ActionChunkingwithTransformers)方法。ActionChunking模仿学习中,compoundingerror是致使任务失败的主要原因。具体来说,当智能体(agent)在测试时遇到训练集中未见过的情况时,可能会产生预测误差。这些误差会逐步累积,导致智能体进入未知状态,最终
- Process-based Self-Rewarding Language Models 论文简介
ZHOU_CAMP
deepseekrelated论文人工智能深度学习
基于过程的自奖励语言模型:LLM优化的新范式引言大型语言模型(LLM)在多种任务中展现出了强大的能力,尤其是在使用人工标注的偏好数据进行训练时。然而,传统的自奖励范式在数学推理任务中存在局限性,甚至可能在迭代训练中导致模型性能下降。为了解决这些问题,论文《Process-basedSelf-RewardingLanguageModels》提出了一种新的框架,该框架结合了长链推理、逐步LLM评判(L
- 基于 oneM2M 标准的空气质量监测系统的互操作性
神一样的老师
论文阅读分享物联网物联网
论文标题英文标题:InteroperabilityofAirQualityMonitoringSystemsthroughtheoneM2MStandard中文标题:基于oneM2M标准的空气质量监测系统的互操作性作者信息JonnarDanielleDiosana,GabrielAngeloLimlingan,DanielleBryanSore,MarcRosales,IsabelAustria,
- [arxiv论文解读]LlamaFactory:100+语言模型统一高效微调
强化学习曾小健
#LLM大语言模型语言模型人工智能自然语言处理
该文档是一篇关于LLAMAFACTORY的学术论文,这是一个用于高效微调大型语言模型(LLMs)的统一框架。这篇论文详细介绍了LLAMAFACTORY的设计、实现和评估,以及它在语言建模和文本生成任务中的应用。下面是对文档内容的详细解释:摘要(Abstract)背景:大型语言模型(LLMs)在多种应用中展现了卓越的推理能力,但需要有效的微调方法来适应下游任务。问题:现有的高效微调方法缺乏一个系统化
- 量子位招聘 | DeepSeek帮我们改的招聘启事
量子位
关注前沿科技量子位未来同事,你好~这是一则招聘帖。如果你与我们志同道合,对AI大模型、具身智能、终端硬件、AI新媒体编辑感兴趣,我们正在招聘这些领域的原创作者。以下岗位均为全职,工作地点:北京中关村。岗位面向:社招、应届毕业生,所有岗位均可实习——表现出色均可转正加分项:乐于探索AI新工具,善用AI新工具;拥有解读论文的能力,能深入浅出讲解原理;有写代码能力;量子位长期读者。加入我们,你可以获得:
- 使用LangChain实现最新NLP研究成果
eahba
langchain自然语言处理人工智能python
近年来,自然语言处理(NLP)领域的研究取得了显著的进展,而LangChain通过实现这些最新的研究成果,为开发者和研究人员提供了强大的工具与服务。在本文中,我们将探讨一些被LangChain所引用的arXiv研究论文,并展示如何通过API调用和具体示例来实现这些前沿技术。技术背景介绍LangChain作为一个强大且灵活的开源工具,旨在简化大语言模型(LLMs)的开发与应用。通过对最新研究的集成,
- rust的指针作为函数返回值是直接传递,还是先销毁后创建?
wudixiaotie
返回值
这是我自己想到的问题,结果去知呼提问,还没等别人回答, 我自己就想到方法实验了。。
fn main() {
let mut a = 34;
println!("a's addr:{:p}", &a);
let p = &mut a;
println!("p's addr:{:p}", &a
- java编程思想 -- 数据的初始化
百合不是茶
java数据的初始化
1.使用构造器确保数据初始化
/*
*在ReckInitDemo类中创建Reck的对象
*/
public class ReckInitDemo {
public static void main(String[] args) {
//创建Reck对象
new Reck();
}
}
- [航天与宇宙]为什么发射和回收航天器有档期
comsci
地球的大气层中有一个时空屏蔽层,这个层次会不定时的出现,如果该时空屏蔽层出现,那么将导致外层空间进入的任何物体被摧毁,而从地面发射到太空的飞船也将被摧毁...
所以,航天发射和飞船回收都需要等待这个时空屏蔽层消失之后,再进行
&
- linux下批量替换文件内容
商人shang
linux替换
1、网络上现成的资料
格式: sed -i "s/查找字段/替换字段/g" `grep 查找字段 -rl 路径`
linux sed 批量替换多个文件中的字符串
sed -i "s/oldstring/newstring/g" `grep oldstring -rl yourdir`
例如:替换/home下所有文件中的www.admi
- 网页在线天气预报
oloz
天气预报
网页在线调用天气预报
<%@ page language="java" contentType="text/html; charset=utf-8"
pageEncoding="utf-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transit
- SpringMVC和Struts2比较
杨白白
springMVC
1. 入口
spring mvc的入口是servlet,而struts2是filter(这里要指出,filter和servlet是不同的。以前认为filter是servlet的一种特殊),这样就导致了二者的机制不同,这里就牵涉到servlet和filter的区别了。
参见:http://blog.csdn.net/zs15932616453/article/details/8832343
2
- refuse copy, lazy girl!
小桔子
copy
妹妹坐船头啊啊啊啊!都打算一点点琢磨呢。文字编辑也写了基本功能了。。今天查资料,结果查到了人家写得完完整整的。我清楚的认识到:
1.那是我自己觉得写不出的高度
2.如果直接拿来用,很快就能解决问题
3.然后就是抄咩~~
4.肿么可以这样子,都不想写了今儿个,留着作参考吧!拒绝大抄特抄,慢慢一点点写!
- apache与php整合
aichenglong
php apache web
一 apache web服务器
1 apeche web服务器的安装
1)下载Apache web服务器
2)配置域名(如果需要使用要在DNS上注册)
3)测试安装访问http://localhost/验证是否安装成功
2 apache管理
1)service.msc进行图形化管理
2)命令管理,配
- Maven常用内置变量
AILIKES
maven
Built-in properties
${basedir} represents the directory containing pom.xml
${version} equivalent to ${project.version} (deprecated: ${pom.version})
Pom/Project properties
Al
- java的类和对象
百合不是茶
JAVA面向对象 类 对象
java中的类:
java是面向对象的语言,解决问题的核心就是将问题看成是一个类,使用类来解决
java使用 class 类名 来创建类 ,在Java中类名要求和构造方法,Java的文件名是一样的
创建一个A类:
class A{
}
java中的类:将某两个事物有联系的属性包装在一个类中,再通
- JS控制页面输入框为只读
bijian1013
JavaScript
在WEB应用开发当中,增、删除、改、查功能必不可少,为了减少以后维护的工作量,我们一般都只做一份页面,通过传入的参数控制其是新增、修改或者查看。而修改时需将待修改的信息从后台取到并显示出来,实际上就是查看的过程,唯一的区别是修改时,页面上所有的信息能修改,而查看页面上的信息不能修改。因此完全可以将其合并,但通过前端JS将查看页面的所有信息控制为只读,在信息量非常大时,就比较麻烦。
- AngularJS与服务器交互
bijian1013
JavaScriptAngularJS$http
对于AJAX应用(使用XMLHttpRequests)来说,向服务器发起请求的传统方式是:获取一个XMLHttpRequest对象的引用、发起请求、读取响应、检查状态码,最后处理服务端的响应。整个过程示例如下:
var xmlhttp = new XMLHttpRequest();
xmlhttp.onreadystatechange
- [Maven学习笔记八]Maven常用插件应用
bit1129
maven
常用插件及其用法位于:http://maven.apache.org/plugins/
1. Jetty server plugin
2. Dependency copy plugin
3. Surefire Test plugin
4. Uber jar plugin
1. Jetty Pl
- 【Hive六】Hive用户自定义函数(UDF)
bit1129
自定义函数
1. 什么是Hive UDF
Hive是基于Hadoop中的MapReduce,提供HQL查询的数据仓库。Hive是一个很开放的系统,很多内容都支持用户定制,包括:
文件格式:Text File,Sequence File
内存中的数据格式: Java Integer/String, Hadoop IntWritable/Text
用户提供的 map/reduce 脚本:不管什么
- 杀掉nginx进程后丢失nginx.pid,如何重新启动nginx
ronin47
nginx 重启 pid丢失
nginx进程被意外关闭,使用nginx -s reload重启时报如下错误:nginx: [error] open() “/var/run/nginx.pid” failed (2: No such file or directory)这是因为nginx进程被杀死后pid丢失了,下一次再开启nginx -s reload时无法启动解决办法:nginx -s reload 只是用来告诉运行中的ng
- UI设计中我们为什么需要设计动效
brotherlamp
UIui教程ui视频ui资料ui自学
随着国际大品牌苹果和谷歌的引领,最近越来越多的国内公司开始关注动效设计了,越来越多的团队已经意识到动效在产品用户体验中的重要性了,更多的UI设计师们也开始投身动效设计领域。
但是说到底,我们到底为什么需要动效设计?或者说我们到底需要什么样的动效?做动效设计也有段时间了,于是尝试用一些案例,从产品本身出发来说说我所思考的动效设计。
一、加强体验舒适度
嗯,就是让用户更加爽更加爽的用你的产品。
- Spring中JdbcDaoSupport的DataSource注入问题
bylijinnan
javaspring
参考以下两篇文章:
http://www.mkyong.com/spring/spring-jdbctemplate-jdbcdaosupport-examples/
http://stackoverflow.com/questions/4762229/spring-ldap-invoking-setter-methods-in-beans-configuration
Sprin
- 数据库连接池的工作原理
chicony
数据库连接池
随着信息技术的高速发展与广泛应用,数据库技术在信息技术领域中的位置越来越重要,尤其是网络应用和电子商务的迅速发展,都需要数据库技术支持动 态Web站点的运行,而传统的开发模式是:首先在主程序(如Servlet、Beans)中建立数据库连接;然后进行SQL操作,对数据库中的对象进行查 询、修改和删除等操作;最后断开数据库连接。使用这种开发模式,对
- java 关键字
CrazyMizzz
java
关键字是事先定义的,有特别意义的标识符,有时又叫保留字。对于保留字,用户只能按照系统规定的方式使用,不能自行定义。
Java中的关键字按功能主要可以分为以下几类:
(1)访问修饰符
public,private,protected
p
- Hive中的排序语法
daizj
排序hiveorder byDISTRIBUTE BYsort by
Hive中的排序语法 2014.06.22 ORDER BY
hive中的ORDER BY语句和关系数据库中的sql语法相似。他会对查询结果做全局排序,这意味着所有的数据会传送到一个Reduce任务上,这样会导致在大数量的情况下,花费大量时间。
与数据库中 ORDER BY 的区别在于在hive.mapred.mode = strict模式下,必须指定 limit 否则执行会报错。
- 单态设计模式
dcj3sjt126com
设计模式
单例模式(Singleton)用于为一个类生成一个唯一的对象。最常用的地方是数据库连接。 使用单例模式生成一个对象后,该对象可以被其它众多对象所使用。
<?phpclass Example{ // 保存类实例在此属性中 private static&
- svn locked
dcj3sjt126com
Lock
post-commit hook failed (exit code 1) with output:
svn: E155004: Working copy 'D:\xx\xxx' locked
svn: E200031: sqlite: attempt to write a readonly database
svn: E200031: sqlite: attempt to write a
- ARM寄存器学习
e200702084
数据结构C++cC#F#
无论是学习哪一种处理器,首先需要明确的就是这种处理器的寄存器以及工作模式。
ARM有37个寄存器,其中31个通用寄存器,6个状态寄存器。
1、不分组寄存器(R0-R7)
不分组也就是说说,在所有的处理器模式下指的都时同一物理寄存器。在异常中断造成处理器模式切换时,由于不同的处理器模式使用一个名字相同的物理寄存器,就是
- 常用编码资料
gengzg
编码
List<UserInfo> list=GetUserS.GetUserList(11);
String json=JSON.toJSONString(list);
HashMap<Object,Object> hs=new HashMap<Object, Object>();
for(int i=0;i<10;i++)
{
- 进程 vs. 线程
hongtoushizi
线程linux进程
我们介绍了多进程和多线程,这是实现多任务最常用的两种方式。现在,我们来讨论一下这两种方式的优缺点。
首先,要实现多任务,通常我们会设计Master-Worker模式,Master负责分配任务,Worker负责执行任务,因此,多任务环境下,通常是一个Master,多个Worker。
如果用多进程实现Master-Worker,主进程就是Master,其他进程就是Worker。
如果用多线程实现
- Linux定时Job:crontab -e 与 /etc/crontab 的区别
Josh_Persistence
linuxcrontab
一、linux中的crotab中的指定的时间只有5个部分:* * * * *
分别表示:分钟,小时,日,月,星期,具体说来:
第一段 代表分钟 0—59
第二段 代表小时 0—23
第三段 代表日期 1—31
第四段 代表月份 1—12
第五段 代表星期几,0代表星期日 0—6
如:
*/1 * * * * 每分钟执行一次。
*
- KMP算法详解
hm4123660
数据结构C++算法字符串KMP
字符串模式匹配我们相信大家都有遇过,然而我们也习惯用简单匹配法(即Brute-Force算法),其基本思路就是一个个逐一对比下去,这也是我们大家熟知的方法,然而这种算法的效率并不高,但利于理解。
假设主串s="ababcabcacbab",模式串为t="
- 枚举类型的单例模式
zhb8015
单例模式
E.编写一个包含单个元素的枚举类型[极推荐]。代码如下:
public enum MaYun {himself; //定义一个枚举的元素,就代表MaYun的一个实例private String anotherField;MaYun() {//MaYun诞生要做的事情//这个方法也可以去掉。将构造时候需要做的事情放在instance赋值的时候:/** himself = MaYun() {*
- Kafka+Storm+HDFS
ssydxa219
storm
cd /myhome/usr/stormbin/storm nimbus &bin/storm supervisor &bin/storm ui &Kafka+Storm+HDFS整合实践kafka_2.9.2-0.8.1.1.tgzapache-storm-0.9.2-incubating.tar.gzKafka安装配置我们使用3台机器搭建Kafk
- Java获取本地服务器的IP
中华好儿孙
javaWeb获取服务器ip地址
System.out.println("getRequestURL:"+request.getRequestURL());
System.out.println("getLocalAddr:"+request.getLocalAddr());
System.out.println("getLocalPort:&quo