- 深度学习与目标检测系列(三) 本文约(4万字) | 全面解读复现AlexNet | Pytorch |
小酒馆燃着灯
深度学习目标检测pytorchAlexNet人工智能
文章目录解读Abstract-摘要翻译精读主要内容1.Introduction—前言翻译精读主要内容:本文主要贡献:2.TheDataset-数据集翻译精读主要内容:ImageNet简介:图像处理方法:3.TheArchitecture—网络结构3.1ReLUNonlinearity—非线性激活函数ReLU翻译精读传统方法及不足本文改进方法本文的改进结果3.2TrainingonMultipleG
- 使用 Milvus 进行向量数据库管理与实践
qahaj
milvus数据库python
技术背景介绍在当今的AI与机器学习应用中,处理和管理大量的嵌入向量是一个常见的需求。Milvus是一个开源向量数据库,专门用于存储、索引和管理深度神经网络以及其他机器学习模型生成的大规模嵌入向量。它的高性能和易用性使其成为处理向量数据的理想选择。核心原理解析Milvus的核心功能体现在其强大的向量索引和搜索能力。它支持多种索引算法,包括IVF、HNSW等,使其能够高效地进行大规模向量的相似性搜索操
- 物理学不存在了?诺贝尔物理学奖颁给了人工智能
资讯新鲜事
人工智能
2024年10月8日,瑞典皇家科学院宣布,将2024年诺贝尔物理学奖授予美国普林斯顿大学教授约翰·J·霍普菲尔德(JohnJ.Hopfield)和加拿大多伦多大学教授杰弗里·E·辛顿(GeoffreyE.Hinton),以表彰他们“在人工神经网络机器学习方面的基础性发现和发明”。辛顿在接受电话采访时表示:“完全没想到”。实话实说,在结果出来前,大家也都没想到。因为在外界预测里,今年的诺贝尔物理学奖
- PHP 爬虫实战:爬取淘宝商品详情数据
EcomDataMiner
php爬虫开发语言
随着互联网技术的发展,数据爬取越来越成为了数据分析、机器学习等领域的重要前置技能。而在这其中,爬虫技术更是不可或缺。php作为一门广泛使用的后端编程语言,其在爬虫领域同样也有着广泛应用和优势。本文将以爬取斗鱼直播数据为例,介绍php爬虫的实战应用。准备工作在开始爬虫之前,我们需要做一些准备工作。首先,需要搭建一个本地服务器环境,推荐使用WAMP、XAMPP等集成化工具,方便部署PHP环境。其次,我
- PXI PXIe控制器:4Link架构+16GB带宽,兼容主流机箱,设计文件涵盖原理图、PCB和FPGA源码,实现可直接制板,高带宽PXI PXIe控制器,4Link架构,兼容主流机箱,提供设计文件、
suRQWcVNi
fpga开发程序人生
PXIPXIe控制器4Link架构16GB带宽兼容主流PXIe机箱设计文件原理图&PCBFPGA源码可直接制板ID:8245999662600997605浪里个浪里个浪001PXI和PXIe控制器是一种用于测量和自动化测试的高性能仪器。它们采用了4Link架构,可以提供高达16GB的数据传输带宽。同时,这些控制器还兼容主流的PXIe机箱,具有很好的兼容性。在设计文件方面,PXI和PXIe控制器提供
- PXI/PXIe控制器 4Link架构 16GB带宽 兼容主流PXIe机箱 设计文件 原理图&PCB FPGA源码 可直
FjtKvOwLaGa
fpga开发架构
PXI/PXIe控制器4Link架构16GB带宽兼容主流PXIe机箱设计文件!!!原理图&PCBFPGA源码可直接制板PXI和PXIe技术在现代仪器仪表领域中扮演着重要角色。其中,PXI(PCIeXtensionsforInstrumentation)是一种基于PCI总线的测试和测量平台,而PXIe则是对PXI进行扩展和增强的新一代标准。在PXI和PXIe平台中,控制器是关键组件之一,而PXIPX
- 强化学习中的深度卷积神经网络设计与应用实例
数字扫地僧
计算机视觉cnn人工智能神经网络
I.引言强化学习(ReinforcementLearning,RL)是机器学习的一个重要分支,通过与环境的交互来学习最优策略。深度学习,特别是深度卷积神经网络(DeepConvolutionalNeuralNetworks,DCNNs)的引入,为强化学习在处理高维度数据方面提供了强大工具。本文将探讨强化学习中深度卷积神经网络的设计原则及其在不同应用场景中的实例。II.深度卷积神经网络在强化学习中的
- 模拟退火算法:原理、应用与优化策略
尹清雅
算法
摘要模拟退火算法是一种基于物理退火过程的随机搜索算法,在解决复杂优化问题上表现出独特优势。本文详细阐述模拟退火算法的原理,深入分析其核心要素,通过案例展示在函数优化、旅行商问题中的应用,并探讨算法的优化策略与拓展方向,为解决复杂优化问题提供全面的理论与实践指导,助力该算法在多领域的高效应用与创新发展。一、引言在现代科学与工程领域,复杂优化问题无处不在,如资源分配、路径规划、机器学习模型参数调优等。
- FPGA基带平台射频数据处理装置及验证系统设计与方法
BE东欲
本文还有配套的精品资源,点击获取简介:FPGA在射频数据处理领域拥有灵活性和高性能,广泛用于通信、雷达、卫星导航等。本资料包重点介绍FPGA基带平台在数字信号处理中的应用,包括调制解调、滤波和FFT等任务。涵盖射频数据处理装置结构,验证系统设计和实施,以及相关工具的使用方法。为学习者提供实践经验和理论知识,助力开发高效可靠的通信系统。1.FPGA在射频数据处理中的应用数字信号处理(DSP)是现代电
- 基于FPGA的3U机箱温度采集板PT100,应用于轨道交通/电力储能等
深圳信迈主板定制专家
轨道交通NXP+FPGAX86+FPGAfpga开发arm开发架构人工智能
板卡简介:本板为温度采集板(PT100),对目标进行测温,然后将温度转换成处理器可识别的电流信号。性能规格:电源:DC5V,DC±15V4线制PT100:7路(标称测温范围-50℃~200℃,对应调理后电流4~20mA,精度±0.5℃)3线制PT100:1路(标称测温范围-50℃~200℃,对应调理后电流4~20mA,精度±0.5℃)尺寸:220mm*100mm*1.6mm重量:0.155kg工作
- FPGA仿真过程中宏定义的修改
学习永无止境@
fpga开发
在仿真过程中,经常会有一些时间变量,比如1分钟,10分钟等,这种级别的仿真很费时间,因此,人们往往将时间参数修改,利用秒级别进行仿真,仿真完成后,再改回分钟级别。下面提供一种宏定义的方式,方便实际过程中和仿真过程中时间参数修改。`defineSIMULATION`ifdefSIMULATIONlocalparamTIMER_CNT_1S=30'd1_000-1'b1;//1s计数的最大值local
- FPGA设计中衍生时钟的定义及约束
学习永无止境@
FPGA设计fpga开发fpga时钟约束
衍生时钟的定义:衍生时钟主要是指由已有的主时钟进行分频、倍频或相移而产生出来的时钟信号,如由时钟管理单元(MMCM等)或一些设计逻辑所驱动产生的时钟信号。衍生时钟的定义取决于主时钟的特性,衍生时钟约束必须指定时钟源,这个时钟源可以是一个已经约束好的主时钟或者另一个衍生时钟,衍生时钟并不直接定义频率、占空比等参数,而是定义其与时钟源的相对关系,如分频系数、倍频系数、相移差值、占空比差值等。因此,在做
- 基于MPC8377的MCPU 3U机箱CPCI板卡
ARM+FPGA+AI工业主板定制专家
轨道交通linuxCodesysRK3568PLCRK3588
板卡简介:本板为主控板(MCPU),主要负责逻辑控制、数据的处理、板卡的通信管理、系统安全保护切换以及数据存储等功能。性能规格:电源:DC5VCPU:MPC8377核数:单核32位主频:667MHzMCU:MK60DN512VLL10FPGA:XC6SLX16-2FT256I存储:DDR2256Mb(CPU)PROM16MB(FPGA)NVSRAM512KB(CPU和FPGA共享)NORFLASH
- 10.2 如何解决从复杂 PDF 文件中提取数据的问题?
墨染辉
大语言模型pdf
10.2如何解决从复杂PDF文件中提取数据的问题?解决方案:嵌入式表格检索解释:嵌入式表格检索是一种专门针对从复杂PDF文件中的表格提取数据的技术。它结合了表格识别、解析和语义理解,使得从复杂结构的表格中检索信息成为可能。具体步骤:表格检测和识别:目标:在PDF页面中准确地定位和识别表格区域。方法:使用计算机视觉和深度学习技术,如卷积神经网络(CNN)或其他先进的图像处理算法。效果:能够检测出页面
- TensorFlow深度学习实战项目:从入门到精通
点我头像干啥
Ai深度学习tensorflow人工智能
引言深度学习作为人工智能领域的一个重要分支,近年来取得了显著的进展。TensorFlow作为Google开源的深度学习框架,因其强大的功能和灵活的架构,成为了众多开发者和研究者的首选工具。本文将带领大家通过一个实战项目,深入理解TensorFlow的使用方法,并掌握深度学习的基本流程。1.TensorFlow简介1.1TensorFlow是什么?TensorFlow是一个开源的机器学习框架,由Go
- 国外7个最佳大语言模型 (LLM) API推荐
幂简集成
API新理念语言模型人工智能自然语言处理
大型语言模型(LLM)API将彻底改变我们处理语言的方式。在深度学习和机器学习算法的支持下,LLMAPI提供了前所未有的自然语言理解能力。通过利用这些新的API,开发人员现在可以创建能够以前所未有的方式理解和响应书面文本的应用程序。下面,我们将比较从Bard到ChatGPT、PaLM等市场上顶级LLMAPI。我们还将探讨整合这些LLM的潜在用例,并考虑其对语言处理的影响。什么是大语言模型(LLM)
- FPGA时序约束的概念和意义
学习永无止境@
FPGA设计fpgafpga开发开发语言
设计人员通过GUI输入时序约束,或者手动输入时序约束的方式告诉Vivado工具关于时钟或者IO接口的时序信息,用于协助Vivado工具在布局布线时尽可能的满足设计人员的时序要求,最大程度的保证Vivado工具每次生成的bit文件都具备良好的稳定性和适应性。
- 机器学习是怎么一步一步由神经网络发展到今天的Transformer架构的?
yuanpan
机器学习神经网络transformer
机器学习和神经网络的发展经历了一系列重要的架构和技术阶段。以下是更全面的总结,涵盖了从早期神经网络到卷积神经网络之前的架构演变:1.早期神经网络:感知机(Perceptron)时间:1950年代末至1960年代。背景:感知机由FrankRosenblatt提出,是第一个具有学习能力的神经网络模型。它由单层神经元组成,可以用于简单的二分类任务。特点:输入层和输出层之间直接连接,没有隐藏层。使用简单的
- 奇异值分解(SVD)
文弱_书生
乱七八糟神经网络人工智能
奇异值分解(SVD)介绍奇异值分解(SVD),这是最强大的矩阵分解技术之一。SVD广泛应用于机器学习、数据科学和其他计算领域,用于降维、降噪和矩阵近似等应用。与仅适用于方阵的特征分解不同,SVD可以应用于任何矩阵,使其成为一种多功能工具。在这里煮啵将分解SVD背后的理论,通过手动计算示例进行分析,并展示如何在Python中实现SVD。在本节结束时,您将清楚地了解SVD的强大功能及其在机器学习中的应
- yum install locate出现Error: Unable to find match: locate解决方案
爱编程的喵喵
Linux解决方案linuxlocateyum解决方案
大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的知识进行总结与归纳,不仅形成深入且独到的理解,而且能够帮助新手快速入门。 本文主要介绍了yuminstalllocate出现
- 【人工智能机器学习基础篇】——深入详解无监督学习之降维:PCA与t-SNE的关键概念与核心原理
猿享天开
人工智能数学基础专讲人工智能机器学习无监督学习降维
深入详解无监督学习之降维:PCA与t-SNE的关键概念与核心原理在当今数据驱动的世界中,数据维度的增多带来了计算复杂性和存储挑战,同时也可能导致模型性能下降,这一现象被称为“维度诅咒”(CurseofDimensionality)。降维作为一种重要的特征提取和数据预处理技术,旨在通过减少数据的维度,保留其主要信息,从而简化数据处理过程,并提升模型的性能。本文将深入探讨两种广泛应用于无监督学习中的降
- Flink启动任务
swg321321
flink大数据
Flink以本地运行作为解读例如:第一章Python机器学习入门之pandas的使用提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录Flink前言StreamExecutionEnvironmentLocalExecutorMiniClusterStreamGraph二、使用步骤1.引入库2.读入数据总结前言提示:这里可以添加本文要记录的大概内容:例如:随着人工智能的不断发
- 计算机专业毕业设计题目推荐(新颖选题)本科计算机人工智能专业相关毕业设计选题大全✅
会写代码的羊
毕设选题课程设计人工智能毕业设计毕设题目毕业设计题目aiAI编程
文章目录前言最新毕设选题(建议收藏起来)本科计算机人工智能专业相关的毕业设计选题毕设作品推荐前言2025全新毕业设计项目博主介绍:✌全网粉丝10W+,CSDN全栈领域优质创作者,博客之星、掘金/华为云/阿里云等平台优质作者。技术范围:SpringBoot、Vue、SSM、HLMT、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、小程序、大数据、机器学习等设计与开发。主要内容:免费功能
- BRAM消耗与FIFO的关系:有效利用FPGA资源的策略
kanhao100
HLSfpga开发
BRAM消耗与FIFO的关系:有效利用FPGA资源的策略引言在FPGA设计中,BRAM(BlockRAM)是用于存储数据的重要资源。有效管理和利用BRAM对于实现高性能数字系统至关重要。特别是对于需要频繁读写数据的应用,FIFO(先进先出)缓冲区的使用与BRAM的消耗之间存在着密切的关系。本文将探讨BRAM的消耗、FIFO的特性,以及如何正确利用BRAM以优化设计效率。1.BRAM的基本概念1.1
- 【机器学习】建模流程
CH3_CH2_CHO
什么?!是机器学习!!机器学习人工智能线性回归逻辑回归
1、数据获取1.1来源数据获取是机器学习建模的第一步,常见的数据来源包括数据库、API、网络爬虫等。数据库是企业内部常见的数据存储方式,例如:MySQL、Oracle等关系型数据库,以及MongoDB等非关系型数据库,它们能够存储大量的结构化和非结构化数据API(应用程序编程接口)提供了从外部获取数据的便捷方式,例如:社交媒体平台的API可以获取用户发布的内容和互动信息网络爬虫则适用于从网页中提取
- 基于FPGA的DDS连续FFT 仿真验证
toonyhe
FPGA开发fpga开发DDSFFTIFFT
基于FPGA的DDS连续FFT仿真验证1摘要本文聚焦AMDLogiCOREIPFastFourierTransform(FFT)核心,深入剖析其在FPGA设计中的应用。该FFT核心基于Cooley-Tukey算法,具备丰富特性,如支持多种数据精度、算术类型及灵活的运行时配置。文中详细介绍了其架构选项、端口设计、理论运算原理,以及在不同场景下的动态范围特性。同时,结合VivadoDesignSuit
- 机器学习课堂4线性回归模型+特征缩放
木尘152132
机器学习线性回归python
一、实验2-2,线性回归模型,计算模型在训练数据集和测试数据集上的均方根误差代码:#2-2线性回归模型importpandasaspdimportnumpyasnpimportmatplotlib.pyplotasplt#参数设置iterations=3000#迭代次数learning_rate=0.0001#学习率m_train=3000#训练样本的数量flag_plot_lines=False
- 无矩阵乘法LLM:效率与性能双突破
XianxinMao
人工智能矩阵人工智能线性代数
标题:无矩阵乘法LLM:效率与性能双突破文章信息摘要:无矩阵乘法的LLMs通过创新技术替代传统矩阵乘法操作,显著降低了计算成本,减少了对GPU的依赖。这种模型在内存使用和延迟方面表现优异,尤其在大规模模型上效率显著提升。例如,13B参数的模型仅需4.19GBGPU内存,延迟低至695.48ms,远优于传统模型。此外,基于FPGA的硬件优化进一步提升了性能,1.3B参数模型功耗仅为13W,达到人类阅
- 【机器学习】模型拟合
CH3_CH2_CHO
什么?!是机器学习!!机器学习人工智能欠拟合过拟合
1、欠拟合1.1现象欠拟合是机器学习和统计建模中的一种常见问题,表现为模型无法充分捕捉数据中的潜在规律和模式。无论是训练数据还是测试数据,模型的预测误差都居高不下。在实际应用中,欠拟合的模型往往显得过于简单和粗糙,无法对数据进行有效的拟合和描述。1.2原因模型过于简单是导致欠拟合的主要原因:例如,使用直线去拟合具有明显曲线趋势的数据,或者使用低阶多项式去拟合高阶的复杂函数关系。这种情况下,模型的表
- 并查集:从连通性检测到动态合并的算法艺术
六七_Shmily
数据结构与算法分析算法
并查集:从连通性检测到动态合并的算法艺术(C++实现)一、并查集:算法世界的隐形支柱在算法竞赛和工程实践中,并查集(DisjointSetUnion,DSU)是解决动态连通性问题的终极武器。它能在近乎常数时间内完成集合的合并与查询操作,广泛应用于社交网络、图像处理、编译器优化等领域。本文将深入剖析并查集的核心原理,并通过实战案例揭示其精妙之处。二、并查集的三重核心1.数据结构设计classDSU{
- PHP,安卓,UI,java,linux视频教程合集
cocos2d-x小菜
javaUIPHPandroidlinux
╔-----------------------------------╗┆
- 各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
bozch
.net.net mvc
在.net mvc5中,在执行某一操作的时候,出现了如下错误:
各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
经查询当前的操作与错误内容无关,经过对错误信息的排查发现,事故出现在数据库迁移上。
回想过去: 在迁移之前已经对数据库进行了添加字段操作,再次进行迁移插入XXX字段的时候,就会提示如上错误。
&
- Java 对象大小的计算
e200702084
java
Java对象的大小
如何计算一个对象的大小呢?
 
- Mybatis Spring
171815164
mybatis
ApplicationContext ac = new ClassPathXmlApplicationContext("applicationContext.xml");
CustomerService userService = (CustomerService) ac.getBean("customerService");
Customer cust
- JVM 不稳定参数
g21121
jvm
-XX 参数被称为不稳定参数,之所以这么叫是因为此类参数的设置很容易引起JVM 性能上的差异,使JVM 存在极大的不稳定性。当然这是在非合理设置的前提下,如果此类参数设置合理讲大大提高JVM 的性能及稳定性。 可以说“不稳定参数”
- 用户自动登录网站
永夜-极光
用户
1.目标:实现用户登录后,再次登录就自动登录,无需用户名和密码
2.思路:将用户的信息保存为cookie
每次用户访问网站,通过filter拦截所有请求,在filter中读取所有的cookie,如果找到了保存登录信息的cookie,那么在cookie中读取登录信息,然后直接
- centos7 安装后失去win7的引导记录
程序员是怎么炼成的
操作系统
1.使用root身份(必须)打开 /boot/grub2/grub.cfg 2.找到 ### BEGIN /etc/grub.d/30_os-prober ### 在后面添加 menuentry "Windows 7 (loader) (on /dev/sda1)" { 
- Oracle 10g 官方中文安装帮助文档以及Oracle官方中文教程文档下载
aijuans
oracle
Oracle 10g 官方中文安装帮助文档下载:http://download.csdn.net/tag/Oracle%E4%B8%AD%E6%96%87API%EF%BC%8COracle%E4%B8%AD%E6%96%87%E6%96%87%E6%A1%A3%EF%BC%8Coracle%E5%AD%A6%E4%B9%A0%E6%96%87%E6%A1%A3 Oracle 10g 官方中文教程
- JavaEE开源快速开发平台G4Studio_V3.2发布了
無為子
AOPoraclemysqljavaeeG4Studio
我非常高兴地宣布,今天我们最新的JavaEE开源快速开发平台G4Studio_V3.2版本已经正式发布。大家可以通过如下地址下载。
访问G4Studio网站
http://www.g4it.org
G4Studio_V3.2版本变更日志
功能新增
(1).新增了系统右下角滑出提示窗口功能。
(2).新增了文件资源的Zip压缩和解压缩
- Oracle常用的单行函数应用技巧总结
百合不是茶
日期函数转换函数(核心)数字函数通用函数(核心)字符函数
单行函数; 字符函数,数字函数,日期函数,转换函数(核心),通用函数(核心)
一:字符函数:
.UPPER(字符串) 将字符串转为大写
.LOWER (字符串) 将字符串转为小写
.INITCAP(字符串) 将首字母大写
.LENGTH (字符串) 字符串的长度
.REPLACE(字符串,'A','_') 将字符串字符A转换成_
- Mockito异常测试实例
bijian1013
java单元测试mockito
Mockito异常测试实例:
package com.bijian.study;
import static org.mockito.Mockito.mock;
import static org.mockito.Mockito.when;
import org.junit.Assert;
import org.junit.Test;
import org.mockito.
- GA与量子恒道统计
Bill_chen
JavaScript浏览器百度Google防火墙
前一阵子,统计**网址时,Google Analytics(GA) 和量子恒道统计(也称量子统计),数据有较大的偏差,仔细找相关资料研究了下,总结如下:
为何GA和量子网站统计(量子统计前身为雅虎统计)结果不同?
首先:没有一种网站统计工具能保证百分之百的准确出现该问题可能有以下几个原因:(1)不同的统计分析系统的算法机制不同;(2)统计代码放置的位置和前后
- 【Linux命令三】Top命令
bit1129
linux命令
Linux的Top命令类似于Windows的任务管理器,可以查看当前系统的运行情况,包括CPU、内存的使用情况等。如下是一个Top命令的执行结果:
top - 21:22:04 up 1 day, 23:49, 1 user, load average: 1.10, 1.66, 1.99
Tasks: 202 total, 4 running, 198 sl
- spring四种依赖注入方式
白糖_
spring
平常的java开发中,程序员在某个类中需要依赖其它类的方法,则通常是new一个依赖类再调用类实例的方法,这种开发存在的问题是new的类实例不好统一管理,spring提出了依赖注入的思想,即依赖类不由程序员实例化,而是通过spring容器帮我们new指定实例并且将实例注入到需要该对象的类中。依赖注入的另一种说法是“控制反转”,通俗的理解是:平常我们new一个实例,这个实例的控制权是我
- angular.injector
boyitech
AngularJSAngularJS API
angular.injector
描述: 创建一个injector对象, 调用injector对象的方法可以获得angular的service, 或者用来做依赖注入. 使用方法: angular.injector(modules, [strictDi]) 参数详解: Param Type Details mod
- java-同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待
bylijinnan
Integer
public class PC {
/**
* 题目:生产者-消费者。
* 同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待。
*/
private static final Integer[] val=new Integer[10];
private static
- 使用Struts2.2.1配置
Chen.H
apachespringWebxmlstruts
Struts2.2.1 需要如下 jar包: commons-fileupload-1.2.1.jar commons-io-1.3.2.jar commons-logging-1.0.4.jar freemarker-2.3.16.jar javassist-3.7.ga.jar ognl-3.0.jar spring.jar
struts2-core-2.2.1.jar struts2-sp
- [职业与教育]青春之歌
comsci
教育
每个人都有自己的青春之歌............但是我要说的却不是青春...
大家如果在自己的职业生涯没有给自己以后创业留一点点机会,仅仅凭学历和人脉关系,是难以在竞争激烈的市场中生存下去的....
&nbs
- oracle连接(join)中使用using关键字
daizj
JOINoraclesqlusing
在oracle连接(join)中使用using关键字
34. View the Exhibit and examine the structure of the ORDERS and ORDER_ITEMS tables.
Evaluate the following SQL statement:
SELECT oi.order_id, product_id, order_date
FRO
- NIO示例
daysinsun
nio
NIO服务端代码:
public class NIOServer {
private Selector selector;
public void startServer(int port) throws IOException {
ServerSocketChannel serverChannel = ServerSocketChannel.open(
- C语言学习homework1
dcj3sjt126com
chomework
0、 课堂练习做完
1、使用sizeof计算出你所知道的所有的类型占用的空间。
int x;
sizeof(x);
sizeof(int);
# include <stdio.h>
int main(void)
{
int x1;
char x2;
double x3;
float x4;
printf(&quo
- select in order by , mysql排序
dcj3sjt126com
mysql
If i select like this:
SELECT id FROM users WHERE id IN(3,4,8,1);
This by default will select users in this order
1,3,4,8,
I would like to select them in the same order that i put IN() values so:
- 页面校验-新建项目
fanxiaolong
页面校验
$(document).ready(
function() {
var flag = true;
$('#changeform').submit(function() {
var projectScValNull = true;
var s ="";
var parent_id = $("#parent_id").v
- Ehcache(02)——ehcache.xml简介
234390216
ehcacheehcache.xml简介
ehcache.xml简介
ehcache.xml文件是用来定义Ehcache的配置信息的,更准确的来说它是定义CacheManager的配置信息的。根据之前我们在《Ehcache简介》一文中对CacheManager的介绍我们知道一切Ehcache的应用都是从CacheManager开始的。在不指定配置信
- junit 4.11中三个新功能
jackyrong
java
junit 4.11中两个新增的功能,首先是注解中可以参数化,比如
import static org.junit.Assert.assertEquals;
import java.util.Arrays;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.junit.runn
- 国外程序员爱用苹果Mac电脑的10大理由
php教程分享
windowsPHPunixMicrosoftperl
Mac 在国外很受欢迎,尤其是在 设计/web开发/IT 人员圈子里。普通用户喜欢 Mac 可以理解,毕竟 Mac 设计美观,简单好用,没有病毒。那么为什么专业人士也对 Mac 情有独钟呢?从个人使用经验来看我想有下面几个原因:
1、Mac OS X 是基于 Unix 的
这一点太重要了,尤其是对开发人员,至少对于我来说很重要,这意味着Unix 下一堆好用的工具都可以随手捡到。如果你是个 wi
- 位运算、异或的实际应用
wenjinglian
位运算
一. 位操作基础,用一张表描述位操作符的应用规则并详细解释。
二. 常用位操作小技巧,有判断奇偶、交换两数、变换符号、求绝对值。
三. 位操作与空间压缩,针对筛素数进行空间压缩。
&n
- weblogic部署项目出现的一些问题(持续补充中……)
Everyday都不同
weblogic部署失败
好吧,weblogic的问题确实……
问题一:
org.springframework.beans.factory.BeanDefinitionStoreException: Failed to read candidate component class: URL [zip:E:/weblogic/user_projects/domains/base_domain/serve
- tomcat7性能调优(01)
toknowme
tomcat7
Tomcat优化: 1、最大连接数最大线程等设置
<Connector port="8082" protocol="HTTP/1.1"
useBodyEncodingForURI="t
- PO VO DAO DTO BO TO概念与区别
xp9802
javaDAO设计模式bean领域模型
O/R Mapping 是 Object Relational Mapping(对象关系映射)的缩写。通俗点讲,就是将对象与关系数据库绑定,用对象来表示关系数据。在O/R Mapping的世界里,有两个基本的也是重要的东东需要了解,即VO,PO。
它们的关系应该是相互独立的,一个VO可以只是PO的部分,也可以是多个PO构成,同样也可以等同于一个PO(指的是他们的属性)。这样,PO独立出来,数据持