- 理论五、大模型-Prompt
伯牙碎琴
大模型prompt
一、prompt是什么在大型语言模型集成中,"prompt"是指您向模型提供的输入文本或指令,以引导模型生成特定类型的响应。这个prompt可以是一个问题、一段描述、一个任务说明,甚至是一部分对话历史记录等。通过设计和优化prompt,您可以引导模型生成符合预期的回复或完成特定的任务。在集成大型语言模型时,良好设计的prompt可以帮助模型更准确地理解您的意图,并生成更符合预期的结果。因此,对于不
- linux虚拟机连接不上Xshell
远方 hi
phpapache开发语言
本文介绍了在尝试通过Xshell连接Linux虚拟机时遇到的问题及解决方案。错误表现为无法连接到指定IP的SSH服务。常规检查包括确认网络连通性、防火墙状态和SSH服务状态。作者发现问题根源在于虚拟机的网络配置错误,子网配置与分配的IP地址不匹配。修复网络配置后,成功解决了连接问题。Type`help'tolearnhowtouseXshellprompt.[c:\~]$Connectingto1
- 如何使用 LangChain 组合提示符模板
GEAWfaacc
langchainpython
在现代AI应用中,构建灵活且易于重用的提示符(Prompt)是开发者的核心需求之一。LangChain提供了一种直观的方法来组合不同部分的提示,从而实现提示符模板的高效组合和再利用。本篇文章将通过几个具体的例子,带您了解如何在LangChain中进行提示符的组合。技术背景介绍LangChain是一个用于处理语言模型提示符的框架,它支持将字符串提示符和聊天提示符进行组合,从而提高开发效率和代码复用性
- 如何写出优秀的提示词?ChatGPT官方的六种方法
大懒猫软件
chatgpt命令模式promptai
使用ChatGPT时,提示词(Prompt)的质量直接影响到生成结果的好坏。ChatGPT官方文档中提供了六种优化提示词的方法,这些方法能够帮助用户更好地利用ChatGPT,提升其生成内容的准确性和实用性。本文将结合中文习惯和新的示例,对这些方法进行详细解读。第一章:指令要清晰清晰的指令是高效使用ChatGPT的基础。明确表达需求,避免让模型猜测,是获得精准回答的关键。1.1问题里包含更多细节在提
- PyCharm 2024 终端打开失败问题
DawnDongZ
Windowspycharmpython
PyCharm2024终端打开失败问题PyCharm2024终端问题问题解决方法PyCharm2024终端问题问题在PyCharm2024版本,打开本地命令行终端时异常提示CannotopenCommandPrompt,参考其他类似情况文章处理,切换软件终端为PowerShell再次启动打开同样报错解决方法调整PyCharm终端仿真配置在菜单栏目点击帮助-->查找操作在弹出窗口中输入注册表,进入注
- 【ChatGPT】实用 Prompt 指令大全 —— 一文教你如何更好地挖掘 GPT 的价值
AI天才研究院
ChatGPTchatgptgpt人工智能机器学习Prompt工程
目录ChatGPT实用Prompt指令大全——一文教你如何更好地挖掘GPT的价值1.ChatGPT简介2.如何构建有效的Prompt指令3.形式化问题4.准确化任务需求5.别样表达6.提供上下文信息7.实用Prompts案例ChatGPT指令大全1.生成列表2.修改文本格式3.提供定义或解释4.编写文章或散文5.提供建议或指导6.讲述历史事件或演讲人物7.生成创意内容8.编辑或审查文本9.回答问题
- 免费的AI提示词生成网站
花生糖@
AIGC学习资料库ai提示词
为使用AI生成最合适的提示词完全免费,适配多种场景,快速生成,一键复制,可用于创作、写作、游戏等多种场景网站地址:AI提示词生成器为使用AI生成最合适的提示词,完全免费,适配多种场景,快速生成,一键复制,可用于创作、写作、游戏等多种场景。https://prompt-generator.ilovecoke.cc/
- 在亚马逊云科技上用AI提示词优化功能写出漂亮提示词(下)
佛州小李哥
人工智能aws亚马逊云科技云计算语言模型ai科技
提示工程(PromptEngineering)对各位小伙伴们来说是再熟悉不过了,提示词工程技术是通过编写指令词,指导开发者们调用AI基础模型(FMs)获得期望的响应。但是经常写提示词的朋友们会知道,为了获取理想的输出,我们可能需要花费数月时间不断进行实验和调整才能得到最优的提示词,同时不同基础模型的提示词最佳实践也不尽相同,这意味着我们要设计兼容不同模型类别的提示词。此外提示词通常是与特定模型和特
- 1. 基于大模型能力,如何提炼出优质prompt(入门版)
姚瑞南
prompt系列课程人工智能AIGCchatgpt
本文原创作者:姚瑞南AI-agent大模型运营专家,先后任职于美团、猎聘等中大厂AI训练专家和智能运营专家岗;多年人工智能行业智能产品运营及大模型落地经验,拥有AI外呼方向国家专利与PMP项目管理证书。(转载需经授权)本文简介:入门版:基于大模型能力,如何提炼出优质prompt提示词的重要性和价值大模型基础能力简介prompt的基本定义如何定义优质的promptprompt的万能公式与套路prom
- 从System Prompt来看GPT-3.5到GPT-4的进化
herosunly
大模型systempromptgpt-3chatgptgpt4gpt4o
大家好,我是herosunly。985院校硕士毕业,现担任算法t研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。 本文主要介绍了从SystemPrompt来看GPT-3.5到GPT-4的进化之路,希
- 全面掌握 LangChain:从核心链条构建到动态任务分配的实战指南
大模型铲屎官
现代大模型技术与应用langchainpython大模型LLM
系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战文章目录系列文章目录前言一、LangChain的核心链简介1.1单任务的Prompt模型结合
- 大语言模型原理基础与前沿 指令生成
AI大模型应用之禅
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
大语言模型、指令生成、Transformer、BERT、GPT、LLaMA、Fine-tuning、PromptEngineering1.背景介绍近年来,大语言模型(LargeLanguageModels,LLMs)在自然语言处理领域取得了令人瞩目的成就。从文本生成、翻译到问答和代码编写,LLMs展现出强大的能力,深刻地改变了我们与语言交互的方式。指令生成作为LLMs应用的重要方向之一,旨在通过明
- 玩转 LangChain:从文档加载到高效问答系统构建的全程实战
大模型铲屎官
现代大模型技术与应用langchainpython人工智能nlpAI文档加载问答系统构建
系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战文章目录系列文章目录前言一、LangChain环境搭建与初始配置1.1安装依赖1.2环境变量
- 【AI大模型】Prompt 提示词工程使用详解
小码农叔叔
AI大模型实战与应用Prompt提示词工程使用Prompt提示词工程Prompt提示词Prompt使用详解Promptprompt使用总结Prompt使用总结
目录一、前言二、Prompt提示词工程介绍2.1Prompt提示词工程是什么2.1.1Prompt构成要素2.2Prompt提示词工程有什么作用2.2.1Prompt提示词工程使用场景2.3为什么要学习Prompt提示词工程三、Prompt提示词工程元素构成与操作实践3.1前置准备3.2Prompt基本结构介绍与使用3.2.1明确指令3.2.2提供必要的原始内容3.2.3提供背景参考四、Promp
- windows 10 32bit 配置Python编程环境
wangbingfeng0
toolsmaintenance
确认系统架构点击桌面左下角的搜索按钮,输入cmd运行命令行界面(CommandPrompt);在命令行界面输入wmicCPUgetDataWidth↩︎,返回的是CPU的架构,64或32位;在命令行界面输入wmicOSgetOSArchitecture↩︎,返回的是Windows操作系统架构,64或32位。确认PowerShell版本PowerShell是Windows下的增强命令行环境,也是我们
- Spring AI提示词模板PromptTemplate的使用
大龄码农有梦想
AI人工智能spring人工智能PromptTemplatePrompt提示词提示词模板SpringAI
本文重点介绍Prompt提示词和PromptTemplate提示词模板,在SpringAI框架里,Prompt类的设计旨在简化与LLM之间的交互过程,同时提供了足够的灵活性来满足不同类型的对话需求。通过合理利用Prompt及其内部的消息结构,开发者可以有效地引导LLM生成高质量的回答,提升用户体验。1、SpringBoot集成SpringAI框架如何基于Springboot集成SpringAI框架
- python input 文件路径_python基础 — 文件操作
童雅洋梨
pythoninput文件路径
读取键盘输入Python提供了两个内置函数从标准输入读入一行文本,默认的标准输入是键盘。如下:raw_inputinputraw_input函数raw_input([prompt])函数从标准输入读取一个行,并返回一个字符串(去掉结尾的换行符)。input函数input([prompt])函数和raw_input([prompt])函数基本类似,但是input可以接收一个Python表达式作为输入
- Python input 怎么使用
彭彭不吃虫子
windows数据库服务器
一、input()函数简介Python的input()函数是一个内置函数,用于从用户接收输入。当程序运行到input()函数时,会暂停并等待用户输入一些文本,用户输入的文本将作为函数的返回值。这使得我们可以在程序中获取用户的输入,以便根据输入执行相应的操作。二、input()函数语法input()函数的基本语法如下:input(prompt=None)其中,prompt参数是可选的,它表示在等待用
- VSCode 配置python虚拟环境(激活环境细节)_vscode python conda虚拟环境(1)
2401_83817171
程序员vscodepythonconda
AnacondaPrompt常用命令:1.查看存在的环境:condainfo-e2.创建新环境:condacreate-n环境名python=(python的版本号)3.切换到某个环境:condaactivate环境名4.查看环境中已安装的包:condalist5.在环境中安装包:pipinstall包名6.删除包:pipunstall包名7.删除环境:condaenvremove-n环境名下载库
- 玩转大模型的第一步——提示词(Prompt)工程【抛砖篇】
AI大模型老林
prompt数据挖掘机器学习opencv语音识别人工智能
前言AI大模型提示词工程,又名LLMpromptsProject,指的是在使用大型语言模型(如OpenAI的GPT系列)时,用于引导模型生成特定响应的输入,是在使用AI大模型过程中非常重要的一个环节,是模型生成文本的起点。选择合适的Prompt对大模型回答的质量影响非常大,甚至可能会导致截然不同的结果。Prompt编写框架我们可以简单的看一下,分别使用下面两个Prompt在LLM的输出中分别会得到
- 最新指南,如何使用 ChatGPT 提示词指令进行学术写作
智写AI
AI学术写作指南chatgpt人工智能
第1部分:学术写作之旅:使用ChatGPTPrompts进行学术写作的结构化指南踏上学术写作过程的结构化旅程,每个ChatGPT提示都旨在解决特定方面,确保对您的主题进行全面探索。制定研究问题:“制定一个关于量子计算的社会影响的研究问题,确保清晰并与您的研究目标保持一致。制作大纲:“为一篇关于量子计算的社会影响的文章构建大纲,包括引言、正文段落和结论,确保逻辑流畅。进行文献综述:“总结量子计算的关
- 无需卸载,降低python版本的方法
DOT Manager
Python技能python开发语言
降低python版本的方法:1、打开anacondaprompt窗口;2、输入“condainstallpython=3.6”命令并回车;3、等待提示(y/n),输入y,再等待一段时间,当提示done则成功退回到python3.6。一般可能无法降低版本,使用如下方法:Anaconda虚拟环境下更换python版本【不论升版本、降版本都使用condainstallpython命令】【注意:修改版本后
- python调用阿里云通义千问(q-wen-max)API-创建智能体Agent
Cachel wood
LLM和AIGCjava开发语言pythonscrapy阿里云云计算数据库
文章目录AssistantAPI简介创建和使用AssistantAPI1、调用AssistantAPI夸克搜索回答问题2、Agent智能体构建AssistantAPI简介百炼AssistantAPI能够让用户定制化构建一个assistant,这个assistant支持多种不同的指令(instruction)和描述(prompt),并且可以使用各类工具插件(plugins)和调用已选择的API来回答
- 深度学习-45-大型语言模型LLM之本地化部署运行自己的大模型
皮皮冰燃
深度学习深度学习人工智能
文章目录1深度学习1.1神经网络和深度学习1.2神经网络的工作原理1.3神经网络的专业术语2LLM概述2.1大模型的"大"是指什么?2.2训练大模型有多烧钱?2.3如何入门大模型?2.4LLM的结构2.4.1Transformer2.4.2Prompts2.4.3FineTuning3本地跑大模型3.1Ollama运行开源LLM3.1.1启动并运行3.1.2使用api访问3.1.3设置外网访问3.
- 5分钟搞定Spring AI支持SpringBoot快速构建人工智能AI应用_springai_springboot_AI应用
web17886480312
spring人工智能springboot
通过阅读这篇文章,你将了解SpringAI,它是一个借鉴了langchain的设计理念,并结合Java的优势,为开发者提供易于替换实现的统一接口。此外,文章还基于SpringAI的模型调用和Prompt模板,构建一个可操作的示例,让你可以快速的了解具体怎么在springboot的环境下使用springai来构建人工智能AI的应用SpringAI:简化Java大模型集成的统一框架在Java调用大模型
- 吴恩达系列——微调(Fine-tuning)与生成模型的应用
疯狂小料
aiprompt
微调(Fine-tuning)是指在已有预训练模型的基础上,对模型进行进一步训练,以适应特定任务或需求。在自然语言处理领域,生成模型通过微调可以在特定场景下生成更加准确、一致的输出,同时保护用户的隐私,减少不当信息的泄露。本文将结合生成模型的工作原理和实际应用,解释微调如何提升生成模型的效果,并探讨其在保护隐私方面的优势。1.生成模型与Prompt的作用生成模型,如GPT系列,通常通过接受一个输入
- conda升级
ihateright
condapython开发语言
要升级conda,可以在终端或AnacondaPrompt中输入以下命令:plaintextCopycodecondaupdateconda如果想要升级所有已安装的包,可以使用以下命令:plaintextCopycodecondaupdate--all注意,在升级过程中可能会出现一些依赖关系的问题,需要跟随提示进行解决。同时,建议在升级前备份重要的工作环境。
- midjourney初学者必看(迅速入门)
会飞the羊
midjourney
Midjourney初步学习:基本操作流程:-新建一个服务器-在输入框里添加MJROBOT:https://discord.com/oauth2/authorize?client_id=936929561302675456&permissions=2147601472&scope=applications.commands%20bot-输入/→选择imagine开始写prompt-prompt使用
- 1.Spring AI 从入门到实践
laopeng301
SpringAIspring人工智能java
SpringAI从入门到实践1.什么是SpringAI2.使用SpringBoot&SpringAI快速构建AI应用程序3.ChatClient&ChatModel简化与AI模型的交互4.SpringAIPrompt:与大模型进行有效沟通5.结构化输出大模型响应6.实战:AI聊天机器人Ben技术站关注Java技术,LLM,计算机科学等内容。关注会持续更新推送详细教程内容和源码。
- 第79期 | GPTSecurity周报
云起无垠
GPTSecurityAIGCgpt
GPTSecurity是一个涵盖了前沿学术研究和实践经验分享的社区,集成了生成预训练Transformer(GPT)、人工智能生成内容(AIGC)以及大语言模型(LLM)等安全领域应用的知识。在这里,您可以找到关于GPT/AIGC/LLM最新的研究论文、博客文章、实用的工具和预设指令(Prompts)。现为了更好地知悉近一周的贡献内容,现总结如下。SecurityPapers1.TrojanWhi
- tomcat基础与部署发布
暗黑小菠萝
Tomcat java web
从51cto搬家了,以后会更新在这里方便自己查看。
做项目一直用tomcat,都是配置到eclipse中使用,这几天有时间整理一下使用心得,有一些自己配置遇到的细节问题。
Tomcat:一个Servlets和JSP页面的容器,以提供网站服务。
一、Tomcat安装
安装方式:①运行.exe安装包
&n
- 网站架构发展的过程
ayaoxinchao
数据库应用服务器网站架构
1.初始阶段网站架构:应用程序、数据库、文件等资源在同一个服务器上
2.应用服务和数据服务分离:应用服务器、数据库服务器、文件服务器
3.使用缓存改善网站性能:为应用服务器提供本地缓存,但受限于应用服务器的内存容量,可以使用专门的缓存服务器,提供分布式缓存服务器架构
4.使用应用服务器集群改善网站的并发处理能力:使用负载均衡调度服务器,将来自客户端浏览器的访问请求分发到应用服务器集群中的任何
- [信息与安全]数据库的备份问题
comsci
数据库
如果你们建设的信息系统是采用中心-分支的模式,那么这里有一个问题
如果你的数据来自中心数据库,那么中心数据库如果出现故障,你的分支机构的数据如何保证安全呢?
是否应该在这种信息系统结构的基础上进行改造,容许分支机构的信息系统也备份一个中心数据库的文件呢?
&n
- 使用maven tomcat plugin插件debug关联源代码
商人shang
mavendebug查看源码tomcat-plugin
*首先需要配置好'''maven-tomcat7-plugin''',参见[[Maven开发Web项目]]的'''Tomcat'''部分。
*配置好后,在[[Eclipse]]中打开'''Debug Configurations'''界面,在'''Maven Build'''项下新建当前工程的调试。在'''Main'''选项卡中点击'''Browse Workspace...'''选择需要开发的
- 大访问量高并发
oloz
大访问量高并发
大访问量高并发的网站主要压力还是在于数据库的操作上,尽量避免频繁的请求数据库。下面简
要列出几点解决方案:
01、优化你的代码和查询语句,合理使用索引
02、使用缓存技术例如memcache、ecache将不经常变化的数据放入缓存之中
03、采用服务器集群、负载均衡分担大访问量高并发压力
04、数据读写分离
05、合理选用框架,合理架构(推荐分布式架构)。
- cache 服务器
小猪猪08
cache
Cache 即高速缓存.那么cache是怎么样提高系统性能与运行速度呢?是不是在任何情况下用cache都能提高性能?是不是cache用的越多就越好呢?我在近期开发的项目中有所体会,写下来当作总结也希望能跟大家一起探讨探讨,有错误的地方希望大家批评指正。
1.Cache 是怎么样工作的?
Cache 是分配在服务器上
- mysql存储过程
香水浓
mysql
Description:插入大量测试数据
use xmpl;
drop procedure if exists mockup_test_data_sp;
create procedure mockup_test_data_sp(
in number_of_records int
)
begin
declare cnt int;
declare name varch
- CSS的class、id、css文件名的常用命名规则
agevs
JavaScriptUI框架Ajaxcss
CSS的class、id、css文件名的常用命名规则
(一)常用的CSS命名规则
头:header
内容:content/container
尾:footer
导航:nav
侧栏:sidebar
栏目:column
页面外围控制整体布局宽度:wrapper
左右中:left right
- 全局数据源
AILIKES
javatomcatmysqljdbcJNDI
实验目的:为了研究两个项目同时访问一个全局数据源的时候是创建了一个数据源对象,还是创建了两个数据源对象。
1:将diuid和mysql驱动包(druid-1.0.2.jar和mysql-connector-java-5.1.15.jar)copy至%TOMCAT_HOME%/lib下;2:配置数据源,将JNDI在%TOMCAT_HOME%/conf/context.xml中配置好,格式如下:&l
- MYSQL的随机查询的实现方法
baalwolf
mysql
MYSQL的随机抽取实现方法。举个例子,要从tablename表中随机提取一条记录,大家一般的写法就是:SELECT * FROM tablename ORDER BY RAND() LIMIT 1。但是,后来我查了一下MYSQL的官方手册,里面针对RAND()的提示大概意思就是,在ORDER BY从句里面不能使用RAND()函数,因为这样会导致数据列被多次扫描。但是在MYSQL 3.23版本中,
- JAVA的getBytes()方法
bijian1013
javaeclipseunixOS
在Java中,String的getBytes()方法是得到一个操作系统默认的编码格式的字节数组。这个表示在不同OS下,返回的东西不一样!
String.getBytes(String decode)方法会根据指定的decode编码返回某字符串在该编码下的byte数组表示,如:
byte[] b_gbk = "
- AngularJS中操作Cookies
bijian1013
JavaScriptAngularJSCookies
如果你的应用足够大、足够复杂,那么你很快就会遇到这样一咱种情况:你需要在客户端存储一些状态信息,这些状态信息是跨session(会话)的。你可能还记得利用document.cookie接口直接操作纯文本cookie的痛苦经历。
幸运的是,这种方式已经一去不复返了,在所有现代浏览器中几乎
- [Maven学习笔记五]Maven聚合和继承特性
bit1129
maven
Maven聚合
在实际的项目中,一个项目通常会划分为多个模块,为了说明问题,以用户登陆这个小web应用为例。通常一个web应用分为三个模块:
1. 模型和数据持久化层user-core,
2. 业务逻辑层user-service以
3. web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和use
- 【JVM七】JVM知识点总结
bit1129
jvm
1. JVM运行模式
1.1 JVM运行时分为-server和-client两种模式,在32位机器上只有client模式的JVM。通常,64位的JVM默认都是使用server模式,因为server模式的JVM虽然启动慢点,但是,在运行过程,JVM会尽可能的进行优化
1.2 JVM分为三种字节码解释执行方式:mixed mode, interpret mode以及compiler
- linux下查看nginx、apache、mysql、php的编译参数
ronin47
在linux平台下的应用,最流行的莫过于nginx、apache、mysql、php几个。而这几个常用的应用,在手工编译完以后,在其他一些情况下(如:新增模块),往往想要查看当初都使用了那些参数进行的编译。这时候就可以利用以下方法查看。
1、nginx
[root@361way ~]# /App/nginx/sbin/nginx -V
nginx: nginx version: nginx/
- unity中运用Resources.Load的方法?
brotherlamp
unity视频unity资料unity自学unityunity教程
问:unity中运用Resources.Load的方法?
答:Resources.Load是unity本地动态加载资本所用的方法,也即是你想动态加载的时分才用到它,比方枪弹,特效,某些实时替换的图像什么的,主张此文件夹不要放太多东西,在打包的时分,它会独自把里边的一切东西都会集打包到一同,不论里边有没有你用的东西,所以大多数资本应该是自个建文件放置
1、unity实时替换的物体即是依据环境条件
- 线段树-入门
bylijinnan
java算法线段树
/**
* 线段树入门
* 问题:已知线段[2,5] [4,6] [0,7];求点2,4,7分别出现了多少次
* 以下代码建立的线段树用链表来保存,且树的叶子结点类似[i,i]
*
* 参考链接:http://hi.baidu.com/semluhiigubbqvq/item/be736a33a8864789f4e4ad18
* @author lijinna
- 全选与反选
chicony
全选
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>全选与反选</title>
- vim一些简单记录
chenchao051
vim
mac在/usr/share/vim/vimrc linux在/etc/vimrc
1、问:后退键不能删除数据,不能往后退怎么办?
答:在vimrc中加入set backspace=2
2、问:如何控制tab键的缩进?
答:在vimrc中加入set tabstop=4 (任何
- Sublime Text 快捷键
daizj
快捷键sublime
[size=large][/size]Sublime Text快捷键:Ctrl+Shift+P:打开命令面板Ctrl+P:搜索项目中的文件Ctrl+G:跳转到第几行Ctrl+W:关闭当前打开文件Ctrl+Shift+W:关闭所有打开文件Ctrl+Shift+V:粘贴并格式化Ctrl+D:选择单词,重复可增加选择下一个相同的单词Ctrl+L:选择行,重复可依次增加选择下一行Ctrl+Shift+L:
- php 引用(&)详解
dcj3sjt126com
PHP
在PHP 中引用的意思是:不同的名字访问同一个变量内容. 与C语言中的指针是有差别的.C语言中的指针里面存储的是变量的内容在内存中存放的地址 变量的引用 PHP 的引用允许你用两个变量来指向同一个内容 复制代码代码如下:
<?
$a="ABC";
$b =&$a;
echo
- SVN中trunk,branches,tags用法详解
dcj3sjt126com
SVN
Subversion有一个很标准的目录结构,是这样的。比如项目是proj,svn地址为svn://proj/,那么标准的svn布局是svn://proj/|+-trunk+-branches+-tags这是一个标准的布局,trunk为主开发目录,branches为分支开发目录,tags为tag存档目录(不允许修改)。但是具体这几个目录应该如何使用,svn并没有明确的规范,更多的还是用户自己的习惯。
- 对软件设计的思考
e200702084
设计模式数据结构算法ssh活动
软件设计的宏观与微观
软件开发是一种高智商的开发活动。一个优秀的软件设计人员不仅要从宏观上把握软件之间的开发,也要从微观上把握软件之间的开发。宏观上,可以应用面向对象设计,采用流行的SSH架构,采用web层,业务逻辑层,持久层分层架构。采用设计模式提供系统的健壮性和可维护性。微观上,对于一个类,甚至方法的调用,从计算机的角度模拟程序的运行情况。了解内存分配,参数传
- 同步、异步、阻塞、非阻塞
geeksun
非阻塞
同步、异步、阻塞、非阻塞这几个概念有时有点混淆,在此文试图解释一下。
同步:发出方法调用后,当没有返回结果,当前线程会一直在等待(阻塞)状态。
场景:打电话,营业厅窗口办业务、B/S架构的http请求-响应模式。
异步:方法调用后不立即返回结果,调用结果通过状态、通知或回调通知方法调用者或接收者。异步方法调用后,当前线程不会阻塞,会继续执行其他任务。
实现:
- Reverse SSH Tunnel 反向打洞實錄
hongtoushizi
ssh
實際的操作步驟:
# 首先,在客戶那理的機器下指令連回我們自己的 Server,並設定自己 Server 上的 12345 port 會對應到幾器上的 SSH port
ssh -NfR 12345:localhost:22
[email protected]
# 然後在 myhost 的機器上連自己的 12345 port,就可以連回在客戶那的機器
ssh localhost -p 1
- Hibernate中的缓存
Josh_Persistence
一级缓存Hiberante缓存查询缓存二级缓存
Hibernate中的缓存
一、Hiberante中常见的三大缓存:一级缓存,二级缓存和查询缓存。
Hibernate中提供了两级Cache,第一级别的缓存是Session级别的缓存,它是属于事务范围的缓存。这一级别的缓存是由hibernate管理的,一般情况下无需进行干预;第二级别的缓存是SessionFactory级别的缓存,它是属于进程范围或群集范围的缓存。这一级别的缓存
- 对象关系行为模式之延迟加载
home198979
PHP架构延迟加载
形象化设计模式实战 HELLO!架构
一、概念
Lazy Load:一个对象,它虽然不包含所需要的所有数据,但是知道怎么获取这些数据。
延迟加载貌似很简单,就是在数据需要时再从数据库获取,减少数据库的消耗。但这其中还是有不少技巧的。
二、实现延迟加载
实现Lazy Load主要有四种方法:延迟初始化、虚
- xml 验证
pengfeicao521
xmlxml解析
有些字符,xml不能识别,用jdom或者dom4j解析的时候就报错
public static void testPattern() {
// 含有非法字符的串
String str = "Jamey친ÑԂ
- div设置半透明效果
spjich
css半透明
为div设置如下样式:
div{filter:alpha(Opacity=80);-moz-opacity:0.5;opacity: 0.5;}
说明:
1、filter:对win IE设置半透明滤镜效果,filter:alpha(Opacity=80)代表该对象80%半透明,火狐浏览器不认2、-moz-opaci
- 你真的了解单例模式么?
w574240966
java单例设计模式jvm
单例模式,很多初学者认为单例模式很简单,并且认为自己已经掌握了这种设计模式。但事实上,你真的了解单例模式了么。
一,单例模式的5中写法。(回字的四种写法,哈哈。)
1,懒汉式
(1)线程不安全的懒汉式
public cla