会员数据化运营概论

精益数据分析系列之一数据运营基础知识学习

文章目录

    • 精益数据分析系列之一数据运营基础知识学习
      • 一、背景
      • 二、会员运营化概述
      • 三、会员数据化运营场景
      • 四、会员数据化运营关键性指标
      • 五、数据分析分析框架

    在开始本次文章阅读之前,请允许我先引用一本书中一句话:

        每个人都有数据关键是找出哪些能提高你的学习和决策能力。每个人都知道他们需要指标,但要找出那些特别、可衡量、可操作、相关以及及时的指标,是一个巨大的挑战。
                                        ——扎克·尼斯,瑞力软件首席技术专家

一、背景

    本次的内容是关于会员数据化运营的内容,数据分析现在是我们比较热点的话题,但在我学习的过程中,让我发现我所学习的内容全都是手段,方法。给你一段数据让你如何使用python进行数据分析。然后一般的手段就是数据预处理,数据分析,数据建模,机器学习一系列高端的词语,技术手段向着数据上进行堆。当然我说的只是我个人的情况而已,不具备代表性,可能说很高大上,但一直以来接触不到地气,我们这样分析可以帮助我们去了解数据,但是真正的作用又是什么呢,所以我接触到一本书,强烈的安利一下《精益数据分析》,对数据分析、产品等有关的可以看看,满分推荐。对此在此用一个实际案列会员数据化运营进行了解一哈。

二、会员运营化概述

   在我们互联网软件时代中,基本上软件有着先运营在收费场景,那么会员运营自然可以明确化理解。对此我们解释是:
      产品利用会员体系,培养付费且忠诚用户,再通过会员权益建设,守住这群核心流量;进而为产品长线发展或业务延伸提供种子用户,同时避免受到商业竞争加速流失用户。

我们来举个例子:
      如同淘宝、京东两家电商平台竞争,但每家都拥有自己的付费会员,付费会员就是每家的产品底线。
京东通过某购物节全场199-100活动,吸引了很多原本是拼多多、淘宝的用户去消费时。淘宝并不会为此焦虑,因为淘宝有1W+的88vip,75%以上明年才会过期,京东还需要通过多次活动营销,才能持续发展这群用户。对于淘宝来说,这1W+的用户就是产品底线。
      这就是产品会员增长体系的逻辑,会员底层的价值和目的;因此,我们才需要会员体系。

三、会员数据化运营场景

1、会员营销
数据化运营应用于会员营销主要体现在以下几个方面:

  • 以信息化的方式建立基于会员的客户关系管理系统,促进所有会员数据的信息化。
  • 通过特定方法将普通用户拓展为企业用户,并提高新会员留存率。
  • 基于用户历史消费记录,挖掘出用户潜在消费需求及消费热点。
  • 基于历史数据,为会员营销活动提供策略指导和建议,促进精准营销活动的开展。
  • 从会员营销结果中寻找异常订单或转化,作为识别黄牛或VIP客户的参考。
  • 挖掘会员传播关系,找到口碑传播效应的关键节点。

2、会员关怀
数据化运营应用于会员关怀主要体现在以下几个方面:

  • 为预警时间设置阈值,自动触发应急处理机制。
  • 分析会员行为,为会员提供个性化、精准化和差异化服务。
  • 通过会员喜好分析,提高客户忠诚度、活跃度和粘性。
  • 通过会员分析,预防会员流失,并找到挽回已经流失会员的方法。
  • 基于会员群体行为,更好地划分会员群体属性并挖掘群体性特征。
  • 基于群体用户和内容相似度,发现有价值的会员互动方式。
  • 基于会员生命周期的关怀管理,促进用户终生价值最大化。

对于上面我们收集数据,对我们需要进行业务进行数据分析时候,我们需要选取数据的时候,我们可以使用埋点方式,进行选取我们需要数据,当然埋点的方式使我们告诉开发人员,需要客户哪些信息,在网页上进行数据的埋点。有了数据之后,我们要做什么呢,肯定要对数据有一定的了解。在我们了解数据分析手段中,指标的选择可以说是数据分析进阶的一步。指标体系,那么在这里会员化的指标体系是什么呢。

四、会员数据化运营关键性指标

在这里我们简单了解几个重要指数,之后,我们总结了归类了一下会员数据化运营指标,如有详细了解,请直接百度搜索,或者参考会员数据化运营:
会员数据化运营概论_第1张图片
这些是互联网上常见的指数,如果我们必须且有必要的了解一下其中的含义,有的指数还需要我们去核算,当然不同的场景有着不同含义。当然下面指标也不是唯一的。
会员数据化运营概论_第2张图片
那什么是好的指标呢?
一个好的指标,一定是具有比较性的意义。(可以体会一下)

五、数据分析分析框架

      每一套框架对创业的生命周期都有着不同的视角,分别提出一系列值得关注的数据指标和领域。

  • 戴夫·麦克卢尔的海盗指标说(简称AARRR)
  • 埃里克·莱斯的增长引擎说(黏着式、病毒式、付费式)
  • 精益创业画布
  • 肖恩·埃利斯的创业增长金字塔(长漏斗)

以上是我们常见的数据分析框架,不仅仅有此类,还有其他的方式,只要一切以逻辑合理有效为标准。当然对于会员数据化运营也是可以使用这种的。
在这里对于会员数据化运营:会员细分

会员细分模型是将整体会员划分为不同的细分群体或类别,然后基于细分群体做管理、营销和关怀。会员细分模型常用于整体会员的宏观性分析以及探索性分析,通过细分建立初步认知,为下一步的分析和应用提供基本认知。会员细分也是做精准营销的基本前提。
常用的细分模型包括:基于属性的方法、ABC分类法、聚类法等。

基于属性的方法
      会员细分可以基于现有会员属性,常用的细分属性包括:会员地域(例如北京、上海、武汉等)、产品类别(例如大家电、3C数码、图书等)、会员类别(例如大客户、普通客户、VIP客户等)、会员性别(例如男、女、未知)、会员消费等级(例如高价值会员、中价值会员、低价值会员)、会员等级(例如钻石、黄金、白银)等。这种细分方法可以直接利用现有会员数据库数据,无需做二次开发和计算,是一种比较简单且粗浅的方法。

ABC分类法
      ABC分类分(Activity Base Classification)是根据实物的主要特征做分类排列,从而实现区别对待、区别管理的一种方法。ABC法则是由帕累托二八法则衍生出来的一种法则。不同的是,二八法则强调的是抓住关键,ABC法则强调的是分清主次,并将管理对象划分为A、B、C三类。
      在ABC分析法中,先将目标数据列倒序排序,然后做累计百分比统计,最后将得到的累积百分比按照下面的比例至划分为A、B、C三类。

  • A类因素:发生累积频率为0%-80%,是主要影响因素。
  • B类因素:发生累积频率为80%-90%,是次要影响因素。
  • C类因素:发生累积频率为90%-100%,是一般影响因素。

最后如果本文对你有所帮助,希望一键三连哦

你可能感兴趣的:(数据分析,python,数据分析,大数据,人工智能,机器学习)