根据特征匹配关系,用OpenCV计算基础矩阵F, 本质矩阵E,旋转矩阵R,平移向量t

  1. 计算F

    cv::Mat F  = cv::findFundamentalMat(vector<cv::Point2f>& points1,
    									vector<cv::Point2f>& points2,
    									int method,
    									...
    									);															
    
  2. 计算E

    cv::Mat E = cv::findEssentialMet(points1, points2, K);
    
  3. 计算H

    cv::Mat H = cv::findHomography(points1,points2,CV_RANSAC,3);
    
  4. 计算R, t

    cv::Mat R, t;
    cv::recoverPose(F, points1,points2,K,R,t);
    
  5. 代码示例

    #include
    #include
    #include
    #include
    #include
    
    using namespace std;
    
    int ORB_pattern[256 * 4] = {
        8, -3, 9, 5 /*mean (0), correlation (0)*/,
        4, 2, 7, -12 /*mean (1.12461e-05), correlation (0.0437584)*/,
        -11, 9, -8, 2 /*mean (3.37382e-05), correlation (0.0617409)*/,
        7, -12, 12, -13 /*mean (5.62303e-05), correlation (0.0636977)*/,
        2, -13, 2, 12 /*mean (0.000134953), correlation (0.085099)*/,
        1, -7, 1, 6 /*mean (0.000528565), correlation (0.0857175)*/,
        -2, -10, -2, -4 /*mean (0.0188821), correlation (0.0985774)*/,
        -13, -13, -11, -8 /*mean (0.0363135), correlation (0.0899616)*/,
        -13, -3, -12, -9 /*mean (0.121806), correlation (0.099849)*/,
        10, 4, 11, 9 /*mean (0.122065), correlation (0.093285)*/,
        -13, -8, -8, -9 /*mean (0.162787), correlation (0.0942748)*/,
        -11, 7, -9, 12 /*mean (0.21561), correlation (0.0974438)*/,
        7, 7, 12, 6 /*mean (0.160583), correlation (0.130064)*/,
        -4, -5, -3, 0 /*mean (0.228171), correlation (0.132998)*/,
        -13, 2, -12, -3 /*mean (0.00997526), correlation (0.145926)*/,
        -9, 0, -7, 5 /*mean (0.198234), correlation (0.143636)*/,
        12, -6, 12, -1 /*mean (0.0676226), correlation (0.16689)*/,
        -3, 6, -2, 12 /*mean (0.166847), correlation (0.171682)*/,
        -6, -13, -4, -8 /*mean (0.101215), correlation (0.179716)*/,
        11, -13, 12, -8 /*mean (0.200641), correlation (0.192279)*/,
        4, 7, 5, 1 /*mean (0.205106), correlation (0.186848)*/,
        5, -3, 10, -3 /*mean (0.234908), correlation (0.192319)*/,
        3, -7, 6, 12 /*mean (0.0709964), correlation (0.210872)*/,
        -8, -7, -6, -2 /*mean (0.0939834), correlation (0.212589)*/,
        -2, 11, -1, -10 /*mean (0.127778), correlation (0.20866)*/,
        -13, 12, -8, 10 /*mean (0.14783), correlation (0.206356)*/,
        -7, 3, -5, -3 /*mean (0.182141), correlation (0.198942)*/,
        -4, 2, -3, 7 /*mean (0.188237), correlation (0.21384)*/,
        -10, -12, -6, 11 /*mean (0.14865), correlation (0.23571)*/,
        5, -12, 6, -7 /*mean (0.222312), correlation (0.23324)*/,
        5, -6, 7, -1 /*mean (0.229082), correlation (0.23389)*/,
        1, 0, 4, -5 /*mean (0.241577), correlation (0.215286)*/,
        9, 11, 11, -13 /*mean (0.00338507), correlation (0.251373)*/,
        4, 7, 4, 12 /*mean (0.131005), correlation (0.257622)*/,
        2, -1, 4, 4 /*mean (0.152755), correlation (0.255205)*/,
        -4, -12, -2, 7 /*mean (0.182771), correlation (0.244867)*/,
        -8, -5, -7, -10 /*mean (0.186898), correlation (0.23901)*/,
        4, 11, 9, 12 /*mean (0.226226), correlation (0.258255)*/,
        0, -8, 1, -13 /*mean (0.0897886), correlation (0.274827)*/,
        -13, -2, -8, 2 /*mean (0.148774), correlation (0.28065)*/,
        -3, -2, -2, 3 /*mean (0.153048), correlation (0.283063)*/,
        -6, 9, -4, -9 /*mean (0.169523), correlation (0.278248)*/,
        8, 12, 10, 7 /*mean (0.225337), correlation (0.282851)*/,
        0, 9, 1, 3 /*mean (0.226687), correlation (0.278734)*/,
        7, -5, 11, -10 /*mean (0.00693882), correlation (0.305161)*/,
        -13, -6, -11, 0 /*mean (0.0227283), correlation (0.300181)*/,
        10, 7, 12, 1 /*mean (0.125517), correlation (0.31089)*/,
        -6, -3, -6, 12 /*mean (0.131748), correlation (0.312779)*/,
        10, -9, 12, -4 /*mean (0.144827), correlation (0.292797)*/,
        -13, 8, -8, -12 /*mean (0.149202), correlation (0.308918)*/,
        -13, 0, -8, -4 /*mean (0.160909), correlation (0.310013)*/,
        3, 3, 7, 8 /*mean (0.177755), correlation (0.309394)*/,
        5, 7, 10, -7 /*mean (0.212337), correlation (0.310315)*/,
        -1, 7, 1, -12 /*mean (0.214429), correlation (0.311933)*/,
        3, -10, 5, 6 /*mean (0.235807), correlation (0.313104)*/,
        2, -4, 3, -10 /*mean (0.00494827), correlation (0.344948)*/,
        -13, 0, -13, 5 /*mean (0.0549145), correlation (0.344675)*/,
        -13, -7, -12, 12 /*mean (0.103385), correlation (0.342715)*/,
        -13, 3, -11, 8 /*mean (0.134222), correlation (0.322922)*/,
        -7, 12, -4, 7 /*mean (0.153284), correlation (0.337061)*/,
        6, -10, 12, 8 /*mean (0.154881), correlation (0.329257)*/,
        -9, -1, -7, -6 /*mean (0.200967), correlation (0.33312)*/,
        -2, -5, 0, 12 /*mean (0.201518), correlation (0.340635)*/,
        -12, 5, -7, 5 /*mean (0.207805), correlation (0.335631)*/,
        3, -10, 8, -13 /*mean (0.224438), correlation (0.34504)*/,
        -7, -7, -4, 5 /*mean (0.239361), correlation (0.338053)*/,
        -3, -2, -1, -7 /*mean (0.240744), correlation (0.344322)*/,
        2, 9, 5, -11 /*mean (0.242949), correlation (0.34145)*/,
        -11, -13, -5, -13 /*mean (0.244028), correlation (0.336861)*/,
        -1, 6, 0, -1 /*mean (0.247571), correlation (0.343684)*/,
        5, -3, 5, 2 /*mean (0.000697256), correlation (0.357265)*/,
        -4, -13, -4, 12 /*mean (0.00213675), correlation (0.373827)*/,
        -9, -6, -9, 6 /*mean (0.0126856), correlation (0.373938)*/,
        -12, -10, -8, -4 /*mean (0.0152497), correlation (0.364237)*/,
        10, 2, 12, -3 /*mean (0.0299933), correlation (0.345292)*/,
        7, 12, 12, 12 /*mean (0.0307242), correlation (0.366299)*/,
        -7, -13, -6, 5 /*mean (0.0534975), correlation (0.368357)*/,
        -4, 9, -3, 4 /*mean (0.099865), correlation (0.372276)*/,
        7, -1, 12, 2 /*mean (0.117083), correlation (0.364529)*/,
        -7, 6, -5, 1 /*mean (0.126125), correlation (0.369606)*/,
        -13, 11, -12, 5 /*mean (0.130364), correlation (0.358502)*/,
        -3, 7, -2, -6 /*mean (0.131691), correlation (0.375531)*/,
        7, -8, 12, -7 /*mean (0.160166), correlation (0.379508)*/,
        -13, -7, -11, -12 /*mean (0.167848), correlation (0.353343)*/,
        1, -3, 12, 12 /*mean (0.183378), correlation (0.371916)*/,
        2, -6, 3, 0 /*mean (0.228711), correlation (0.371761)*/,
        -4, 3, -2, -13 /*mean (0.247211), correlation (0.364063)*/,
        -1, -13, 1, 9 /*mean (0.249325), correlation (0.378139)*/,
        7, 1, 8, -6 /*mean (0.000652272), correlation (0.411682)*/,
        1, -1, 3, 12 /*mean (0.00248538), correlation (0.392988)*/,
        9, 1, 12, 6 /*mean (0.0206815), correlation (0.386106)*/,
        -1, -9, -1, 3 /*mean (0.0364485), correlation (0.410752)*/,
        -13, -13, -10, 5 /*mean (0.0376068), correlation (0.398374)*/,
        7, 7, 10, 12 /*mean (0.0424202), correlation (0.405663)*/,
        12, -5, 12, 9 /*mean (0.0942645), correlation (0.410422)*/,
        6, 3, 7, 11 /*mean (0.1074), correlation (0.413224)*/,
        5, -13, 6, 10 /*mean (0.109256), correlation (0.408646)*/,
        2, -12, 2, 3 /*mean (0.131691), correlation (0.416076)*/,
        3, 8, 4, -6 /*mean (0.165081), correlation (0.417569)*/,
        2, 6, 12, -13 /*mean (0.171874), correlation (0.408471)*/,
        9, -12, 10, 3 /*mean (0.175146), correlation (0.41296)*/,
        -8, 4, -7, 9 /*mean (0.183682), correlation (0.402956)*/,
        -11, 12, -4, -6 /*mean (0.184672), correlation (0.416125)*/,
        1, 12, 2, -8 /*mean (0.191487), correlation (0.386696)*/,
        6, -9, 7, -4 /*mean (0.192668), correlation (0.394771)*/,
        2, 3, 3, -2 /*mean (0.200157), correlation (0.408303)*/,
        6, 3, 11, 0 /*mean (0.204588), correlation (0.411762)*/,
        3, -3, 8, -8 /*mean (0.205904), correlation (0.416294)*/,
        7, 8, 9, 3 /*mean (0.213237), correlation (0.409306)*/,
        -11, -5, -6, -4 /*mean (0.243444), correlation (0.395069)*/,
        -10, 11, -5, 10 /*mean (0.247672), correlation (0.413392)*/,
        -5, -8, -3, 12 /*mean (0.24774), correlation (0.411416)*/,
        -10, 5, -9, 0 /*mean (0.00213675), correlation (0.454003)*/,
        8, -1, 12, -6 /*mean (0.0293635), correlation (0.455368)*/,
        4, -6, 6, -11 /*mean (0.0404971), correlation (0.457393)*/,
        -10, 12, -8, 7 /*mean (0.0481107), correlation (0.448364)*/,
        4, -2, 6, 7 /*mean (0.050641), correlation (0.455019)*/,
        -2, 0, -2, 12 /*mean (0.0525978), correlation (0.44338)*/,
        -5, -8, -5, 2 /*mean (0.0629667), correlation (0.457096)*/,
        7, -6, 10, 12 /*mean (0.0653846), correlation (0.445623)*/,
        -9, -13, -8, -8 /*mean (0.0858749), correlation (0.449789)*/,
        -5, -13, -5, -2 /*mean (0.122402), correlation (0.450201)*/,
        8, -8, 9, -13 /*mean (0.125416), correlation (0.453224)*/,
        -9, -11, -9, 0 /*mean (0.130128), correlation (0.458724)*/,
        1, -8, 1, -2 /*mean (0.132467), correlation (0.440133)*/,
        7, -4, 9, 1 /*mean (0.132692), correlation (0.454)*/,
        -2, 1, -1, -4 /*mean (0.135695), correlation (0.455739)*/,
        11, -6, 12, -11 /*mean (0.142904), correlation (0.446114)*/,
        -12, -9, -6, 4 /*mean (0.146165), correlation (0.451473)*/,
        3, 7, 7, 12 /*mean (0.147627), correlation (0.456643)*/,
        5, 5, 10, 8 /*mean (0.152901), correlation (0.455036)*/,
        0, -4, 2, 8 /*mean (0.167083), correlation (0.459315)*/,
        -9, 12, -5, -13 /*mean (0.173234), correlation (0.454706)*/,
        0, 7, 2, 12 /*mean (0.18312), correlation (0.433855)*/,
        -1, 2, 1, 7 /*mean (0.185504), correlation (0.443838)*/,
        5, 11, 7, -9 /*mean (0.185706), correlation (0.451123)*/,
        3, 5, 6, -8 /*mean (0.188968), correlation (0.455808)*/,
        -13, -4, -8, 9 /*mean (0.191667), correlation (0.459128)*/,
        -5, 9, -3, -3 /*mean (0.193196), correlation (0.458364)*/,
        -4, -7, -3, -12 /*mean (0.196536), correlation (0.455782)*/,
        6, 5, 8, 0 /*mean (0.1972), correlation (0.450481)*/,
        -7, 6, -6, 12 /*mean (0.199438), correlation (0.458156)*/,
        -13, 6, -5, -2 /*mean (0.211224), correlation (0.449548)*/,
        1, -10, 3, 10 /*mean (0.211718), correlation (0.440606)*/,
        4, 1, 8, -4 /*mean (0.213034), correlation (0.443177)*/,
        -2, -2, 2, -13 /*mean (0.234334), correlation (0.455304)*/,
        2, -12, 12, 12 /*mean (0.235684), correlation (0.443436)*/,
        -2, -13, 0, -6 /*mean (0.237674), correlation (0.452525)*/,
        4, 1, 9, 3 /*mean (0.23962), correlation (0.444824)*/,
        -6, -10, -3, -5 /*mean (0.248459), correlation (0.439621)*/,
        -3, -13, -1, 1 /*mean (0.249505), correlation (0.456666)*/,
        7, 5, 12, -11 /*mean (0.00119208), correlation (0.495466)*/,
        4, -2, 5, -7 /*mean (0.00372245), correlation (0.484214)*/,
        -13, 9, -9, -5 /*mean (0.00741116), correlation (0.499854)*/,
        7, 1, 8, 6 /*mean (0.0208952), correlation (0.499773)*/,
        7, -8, 7, 6 /*mean (0.0220085), correlation (0.501609)*/,
        -7, -4, -7, 1 /*mean (0.0233806), correlation (0.496568)*/,
        -8, 11, -7, -8 /*mean (0.0236505), correlation (0.489719)*/,
        -13, 6, -12, -8 /*mean (0.0268781), correlation (0.503487)*/,
        2, 4, 3, 9 /*mean (0.0323324), correlation (0.501938)*/,
        10, -5, 12, 3 /*mean (0.0399235), correlation (0.494029)*/,
        -6, -5, -6, 7 /*mean (0.0420153), correlation (0.486579)*/,
        8, -3, 9, -8 /*mean (0.0548021), correlation (0.484237)*/,
        2, -12, 2, 8 /*mean (0.0616622), correlation (0.496642)*/,
        -11, -2, -10, 3 /*mean (0.0627755), correlation (0.498563)*/,
        -12, -13, -7, -9 /*mean (0.0829622), correlation (0.495491)*/,
        -11, 0, -10, -5 /*mean (0.0843342), correlation (0.487146)*/,
        5, -3, 11, 8 /*mean (0.0929937), correlation (0.502315)*/,
        -2, -13, -1, 12 /*mean (0.113327), correlation (0.48941)*/,
        -1, -8, 0, 9 /*mean (0.132119), correlation (0.467268)*/,
        -13, -11, -12, -5 /*mean (0.136269), correlation (0.498771)*/,
        -10, -2, -10, 11 /*mean (0.142173), correlation (0.498714)*/,
        -3, 9, -2, -13 /*mean (0.144141), correlation (0.491973)*/,
        2, -3, 3, 2 /*mean (0.14892), correlation (0.500782)*/,
        -9, -13, -4, 0 /*mean (0.150371), correlation (0.498211)*/,
        -4, 6, -3, -10 /*mean (0.152159), correlation (0.495547)*/,
        -4, 12, -2, -7 /*mean (0.156152), correlation (0.496925)*/,
        -6, -11, -4, 9 /*mean (0.15749), correlation (0.499222)*/,
        6, -3, 6, 11 /*mean (0.159211), correlation (0.503821)*/,
        -13, 11, -5, 5 /*mean (0.162427), correlation (0.501907)*/,
        11, 11, 12, 6 /*mean (0.16652), correlation (0.497632)*/,
        7, -5, 12, -2 /*mean (0.169141), correlation (0.484474)*/,
        -1, 12, 0, 7 /*mean (0.169456), correlation (0.495339)*/,
        -4, -8, -3, -2 /*mean (0.171457), correlation (0.487251)*/,
        -7, 1, -6, 7 /*mean (0.175), correlation (0.500024)*/,
        -13, -12, -8, -13 /*mean (0.175866), correlation (0.497523)*/,
        -7, -2, -6, -8 /*mean (0.178273), correlation (0.501854)*/,
        -8, 5, -6, -9 /*mean (0.181107), correlation (0.494888)*/,
        -5, -1, -4, 5 /*mean (0.190227), correlation (0.482557)*/,
        -13, 7, -8, 10 /*mean (0.196739), correlation (0.496503)*/,
        1, 5, 5, -13 /*mean (0.19973), correlation (0.499759)*/,
        1, 0, 10, -13 /*mean (0.204465), correlation (0.49873)*/,
        9, 12, 10, -1 /*mean (0.209334), correlation (0.49063)*/,
        5, -8, 10, -9 /*mean (0.211134), correlation (0.503011)*/,
        -1, 11, 1, -13 /*mean (0.212), correlation (0.499414)*/,
        -9, -3, -6, 2 /*mean (0.212168), correlation (0.480739)*/,
        -1, -10, 1, 12 /*mean (0.212731), correlation (0.502523)*/,
        -13, 1, -8, -10 /*mean (0.21327), correlation (0.489786)*/,
        8, -11, 10, -6 /*mean (0.214159), correlation (0.488246)*/,
        2, -13, 3, -6 /*mean (0.216993), correlation (0.50287)*/,
        7, -13, 12, -9 /*mean (0.223639), correlation (0.470502)*/,
        -10, -10, -5, -7 /*mean (0.224089), correlation (0.500852)*/,
        -10, -8, -8, -13 /*mean (0.228666), correlation (0.502629)*/,
        4, -6, 8, 5 /*mean (0.22906), correlation (0.498305)*/,
        3, 12, 8, -13 /*mean (0.233378), correlation (0.503825)*/,
        -4, 2, -3, -3 /*mean (0.234323), correlation (0.476692)*/,
        5, -13, 10, -12 /*mean (0.236392), correlation (0.475462)*/,
        4, -13, 5, -1 /*mean (0.236842), correlation (0.504132)*/,
        -9, 9, -4, 3 /*mean (0.236977), correlation (0.497739)*/,
        0, 3, 3, -9 /*mean (0.24314), correlation (0.499398)*/,
        -12, 1, -6, 1 /*mean (0.243297), correlation (0.489447)*/,
        3, 2, 4, -8 /*mean (0.00155196), correlation (0.553496)*/,
        -10, -10, -10, 9 /*mean (0.00239541), correlation (0.54297)*/,
        8, -13, 12, 12 /*mean (0.0034413), correlation (0.544361)*/,
        -8, -12, -6, -5 /*mean (0.003565), correlation (0.551225)*/,
        2, 2, 3, 7 /*mean (0.00835583), correlation (0.55285)*/,
        10, 6, 11, -8 /*mean (0.00885065), correlation (0.540913)*/,
        6, 8, 8, -12 /*mean (0.0101552), correlation (0.551085)*/,
        -7, 10, -6, 5 /*mean (0.0102227), correlation (0.533635)*/,
        -3, -9, -3, 9 /*mean (0.0110211), correlation (0.543121)*/,
        -1, -13, -1, 5 /*mean (0.0113473), correlation (0.550173)*/,
        -3, -7, -3, 4 /*mean (0.0140913), correlation (0.554774)*/,
        -8, -2, -8, 3 /*mean (0.017049), correlation (0.55461)*/,
        4, 2, 12, 12 /*mean (0.01778), correlation (0.546921)*/,
        2, -5, 3, 11 /*mean (0.0224022), correlation (0.549667)*/,
        6, -9, 11, -13 /*mean (0.029161), correlation (0.546295)*/,
        3, -1, 7, 12 /*mean (0.0303081), correlation (0.548599)*/,
        11, -1, 12, 4 /*mean (0.0355151), correlation (0.523943)*/,
        -3, 0, -3, 6 /*mean (0.0417904), correlation (0.543395)*/,
        4, -11, 4, 12 /*mean (0.0487292), correlation (0.542818)*/,
        2, -4, 2, 1 /*mean (0.0575124), correlation (0.554888)*/,
        -10, -6, -8, 1 /*mean (0.0594242), correlation (0.544026)*/,
        -13, 7, -11, 1 /*mean (0.0597391), correlation (0.550524)*/,
        -13, 12, -11, -13 /*mean (0.0608974), correlation (0.55383)*/,
        6, 0, 11, -13 /*mean (0.065126), correlation (0.552006)*/,
        0, -1, 1, 4 /*mean (0.074224), correlation (0.546372)*/,
        -13, 3, -9, -2 /*mean (0.0808592), correlation (0.554875)*/,
        -9, 8, -6, -3 /*mean (0.0883378), correlation (0.551178)*/,
        -13, -6, -8, -2 /*mean (0.0901035), correlation (0.548446)*/,
        5, -9, 8, 10 /*mean (0.0949843), correlation (0.554694)*/,
        2, 7, 3, -9 /*mean (0.0994152), correlation (0.550979)*/,
        -1, -6, -1, -1 /*mean (0.10045), correlation (0.552714)*/,
        9, 5, 11, -2 /*mean (0.100686), correlation (0.552594)*/,
        11, -3, 12, -8 /*mean (0.101091), correlation (0.532394)*/,
        3, 0, 3, 5 /*mean (0.101147), correlation (0.525576)*/,
        -1, 4, 0, 10 /*mean (0.105263), correlation (0.531498)*/,
        3, -6, 4, 5 /*mean (0.110785), correlation (0.540491)*/,
        -13, 0, -10, 5 /*mean (0.112798), correlation (0.536582)*/,
        5, 8, 12, 11 /*mean (0.114181), correlation (0.555793)*/,
        8, 9, 9, -6 /*mean (0.117431), correlation (0.553763)*/,
        7, -4, 8, -12 /*mean (0.118522), correlation (0.553452)*/,
        -10, 4, -10, 9 /*mean (0.12094), correlation (0.554785)*/,
        7, 3, 12, 4 /*mean (0.122582), correlation (0.555825)*/,
        9, -7, 10, -2 /*mean (0.124978), correlation (0.549846)*/,
        7, 0, 12, -2 /*mean (0.127002), correlation (0.537452)*/,
        -1, -6, 0, -11 /*mean (0.127148), correlation (0.547401)*/
    };
    const int half_patch_size = 8;  //计算特征点灰度质心的半径8
    const int half_boundary = 16;  //描述子用的是周围半径16
    
    //特征提取和匹配
    void feature_match(cv::Mat &image1, cv::Mat& image2, 
                        vector<cv::KeyPoint>& keypoints1, vector<cv::KeyPoint>& keypoints2, 
                        vector<vector<uint32_t>> &descriptor1, vector<vector<uint32_t>>& descriptor2,
                        vector<cv::DMatch>& matches);
    //计算描述子
    int ComputeDesc(vector<cv::KeyPoint> &fastkeypoints1, vector<vector<uint32_t>>& descriptor1, cv::Mat& image1);
    //根据两个描述子,进行暴力匹配
    void Match(vector<vector<uint32_t>> &descriptor1, vector<vector<uint32_t>>& descriptor2, vector<cv::DMatch>& matches, int threshold_distance = 40);
    
    //位姿计算
    void pose_estimation_2d2d(vector<cv::KeyPoint>& keypoints1, vector<cv::KeyPoint>& keypoints2, vector<cv::DMatch>& matches, cv::Mat& R, cv::Mat& t, cv::Mat& F, cv::Mat& E);
    
    //! 主函数
    int main(int argc,char** argv)
    {
        cv::Mat image11 = cv::imread(argv[1],CV_LOAD_IMAGE_COLOR);  //彩色图
        cv::Mat image22 = cv::imread(argv[2],CV_LOAD_IMAGE_COLOR);
        cv::Mat image1(image11.rows,image11.cols,CV_8UC1);
        cv::Mat image2(image22.rows,image22.cols,CV_8UC1);  //灰度图
        cv::cvtColor(image11,image1,CV_RGB2GRAY);
        cv::cvtColor(image22,image2,CV_RGB2GRAY);
        if(image1.empty() || image2.empty())
        {
            cout<<"image is empty!"<<endl;
            return -1;
        }
    
        vector<cv::KeyPoint> keypoints1, keypoints2;
        vector<vector<uint32_t>> descriptor1, descriptor2;
        vector<cv::DMatch> matches;
        //特征提取和匹配
        /**keypoints1, keypoints2中保存各自提取的特征点  vector
         * matches中保存匹配关系  vector  DMatch的queryIdx, trainIdx是前后的匹配点索引
         **/
        feature_match(image1,image2,keypoints1,keypoints2,descriptor1,descriptor2,matches);
    
        cv::Mat R, t;
        cv::Mat F, E;
        /**所以根据关键点KeyPoint对,或者Point2f对
         * 以及匹配关系DMatch形式,就可以用OpenCV自带的findFundamentalMat(), 或findEssentialMat(), 或findHomography()计算F, E, H
         * */
        pose_estimation_2d2d(keypoints1,keypoints2,matches,R,t,F,E);
        cout<<"R = "<<R<<endl<<endl;
        cout<<"t = "<<t<<endl<<endl;
        double t1 = t.at<double>(0,0);
        double t2 = t.at<double>(1,0);
        double t3 = t.at<double>(2,0);
    
        cv::Mat t_ = cv::Mat::zeros(3,3,CV_64FC1);
        t_.at<double>(0,1) = -t3;
        t_.at<double>(0,2) = t2;
        t_.at<double>(1,0) = t3 ;
        t_.at<double>(1,2) = -t1;
        t_.at<double>(2,0) = -t2;
        t_.at<double>(2,1) = t1;
        // cout<<"t_ = "<
        cv::Mat tR = t_*R;
        cout<<"tR = "<<endl<<tR<<endl<<endl;
        // cout<<"----------"<
        tR.convertTo(tR,CV_32FC1);
        // cout<<"----------"<
        
        //  验证极线约束
        cv::Mat K= cv::Mat::eye(3,3,CV_32FC1);
        K.at<float>(0,0)=520.9;
        K.at<float>(1,1)=521.0;
        K.at<float>(0,2)=325.1;
        K.at<float>(1,2)=249.7;
        cv::Mat inv_K = K.inv();
        cout<<"inv_K = "<<endl<<inv_K<<endl;
        for(int i=0;i<matches.size();i++)
        {
            cv::DMatch& m = matches[i];
            float u1 = keypoints1[m.queryIdx].pt.x;
            float v1 = keypoints1[m.queryIdx].pt.y;
            float u2 = keypoints2[m.trainIdx].pt.x;
            float v2 = keypoints2[m.trainIdx].pt.y;
            cv::Mat p1 = (cv::Mat_<float>(3,1)<<u1,v1,1);
            cv::Mat p2 = (cv::Mat_<float>(3,1)<<u2,v2,1);
            cv::Mat x1 = cv::Mat::zeros(3,1,CV_32FC1);
            cv::Mat x2 = cv::Mat::zeros(3,1,CV_32FC1);
            x1 = inv_K*p1;
            x2 = inv_K*p2;
            cv::Mat ABC = cv::Mat::zeros(3,1,CV_32FC1);
            ABC = tR*x1;
            // cout<<"ABC = "<
            float sqrtAB = sqrt(pow(ABC.at<double>(0,0),2)+pow(ABC.at<double>(1,0),2));
            cv::Mat d = x2.t()*ABC;
            cout<<"d = "<<d<<endl;
        }
    
        return 0;
    }
    
    
    void feature_match(cv::Mat &image1, cv::Mat& image2, 
                        vector<cv::KeyPoint>& fastkeypoints1, vector<cv::KeyPoint>& fastkeypoints2, 
                        vector<vector<uint32_t>> &descriptor1, vector<vector<uint32_t>>& descriptor2,
                        vector<cv::DMatch>& matches)
    {
        chrono::steady_clock::time_point t1 = chrono::steady_clock::now();
        //step1 用OpenCV自带函数 cv::FAST(cv::Mat& image, vector& keypoints) 提取FAST角点
        cv::FAST(image1,fastkeypoints1,40);
        cv::FAST(image2,fastkeypoints2,40);
        // cout<<"fastkeypoints1.size() = "<
        // cout<<"fastkeypoints2.size() = "<
    
        //计算BRIEF描述子
        descriptor1.reserve(fastkeypoints1.size());
        descriptor2.reserve(fastkeypoints2.size());
        int boundary_point1 = ComputeDesc(fastkeypoints1,descriptor1,image1);
        int boundary_point2 = ComputeDesc(fastkeypoints2,descriptor2,image2);
        // cout<<"descriptor1.size() = "<
        // cout<<"descriptor2.size() = "<
        // cout<<"boundary_points1 = "<
        // cout<<"boundary_points2 = "<
    
        chrono::steady_clock::time_point t2 = chrono::steady_clock::now();
        chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>>(t2-t1);
        cout<<"特征提取: "<<time_used.count()<<"秒"<<endl;    
    
        //暴力匹配描述子
        t1 = chrono::steady_clock::now();
        Match(descriptor1,descriptor2,matches,45);
        t2 = chrono::steady_clock::now();
        time_used = chrono::duration_cast<chrono::duration<double>>(t2-t1);
        cout<<"匹配时间: "<<time_used.count()<<"秒"<<endl;
        cout<<"matches.size() = "<<matches.size()<<endl;
    }
    
    
    int ComputeDesc(vector<cv::KeyPoint> &fastkeypoints, vector<vector<uint32_t>>& descriptor, cv::Mat& image)
    {
        int boundary_point=0;
        for(int i=0;i<fastkeypoints.size();i++)  //计算fastkeypoints1的描述子
        {
            // cout<
            int x = fastkeypoints[i].pt.x;
            int y = fastkeypoints[i].pt.y;
            //如果关键点离边界太近,描述子就是空的vector  
            if(x<half_boundary || y<half_boundary || x>image.cols-half_boundary || y>image.rows-half_boundary)
            {
                boundary_point++;
                // descriptor.push_back({});
                descriptor.push_back(vector<uint32_t>(0,0));
                continue;
            }
            double m10=0, m01=0;  //分别表示dx*灰度  dy*灰度
            for(int dx=-half_patch_size;dx<half_patch_size+1;dx++)  //缺点,这个圆旋转后不一定对称了
            {
                int y_size = round(sqrt(pow(half_patch_size,2)-pow(dx,2)));
                // cout<
                for(int dy=-y_size;dy<y_size+1;dy++)
                {
                    m10+=dx*image.at<uchar>(y+dy,x+dx);
                    m01+=dy*image.at<uchar>(y+dy,x+dx);
                }
            }
            double tan_theta = m01/m10;
            // cout<
            double sin_theta = m01/sqrt(pow(m10,2)+pow(m01,2));
            double cos_theta = m10/sqrt(pow(m10,2)+pow(m01,2));
    
            vector<uint32_t> desc(8,0);  //初始化为8个0
            for(int j=0;j<8;j++)
            {
                uint32_t des = 0;
                for(int k=0;k<32;k++)
                {
                    int ind1 = ORB_pattern[4*(32*j+k)];
                    int ind2 = ORB_pattern[4*(32*j+k)+1];
                    int ind3 = ORB_pattern[4*(32*j+k)+2];
                    int ind4 = ORB_pattern[4*(32*j+k)+3];
                    int x1 = ind1*cos_theta-ind2*sin_theta + x;  //旋转后的标准坐标对应的真实的不旋转的坐标(x1,y1)  (x2,y2)
                    int y1 = ind2*cos_theta+ind1*sin_theta + y;
                    int x2 = ind3*cos_theta-ind4*sin_theta + x;
                    int y2 = ind4*cos_theta+ind3*sin_theta + y;
                    
                    if(image.at<uchar>(y1,x1) < image.at<uchar>(y2,x2))
                    {
                        des = (des<<1);//des左移动一位
                        des = (des|1);//des最后一位变成1
                    }
                    else
                    {
                        des<<=1;
                    }
                }
                desc[j]=des;
                // cout<
            }
            descriptor.push_back(desc);
            //desc1中8个32位数,相当与保存了256个二进制01
        }
        // cout<
        return boundary_point;
    }
    
    
    void Match(vector<vector<uint32_t>> &descriptor1, vector<vector<uint32_t>>& descriptor2, vector<cv::DMatch>& matches, const int threshold_distance)
    {
        for(int i=0;i<descriptor1.size();i++)
        {
            if(descriptor1[i].empty())
            {
                // cout<<"描述子1 空"<
                continue;
            }
            for(int j=0;j<descriptor2.size();j++)
            {
                if(descriptor2[j].empty())
                {
                    // cout<<"描述子2 空"<
                    continue;
                }  
    
                int distance = 0;
                cv::DMatch m(i,0,256);
                for(int k=0;k<8;k++)
                {
                    // cout<<"descriptor1[i][k] = "<
                    // cout<<"descriptor2[j][k] = "<
                    uint32_t dis = ((descriptor1[i][k])^(descriptor2[j][k]));   //注意!!!!!!!!!!!这里一定也是uint32_t  在这里调试了好久, 不能是int
                    // cout<<"i:"<
                    // cout<<"k:"<
                    // cout<<"\tdis = "<< dis <
                    while(dis!=0)
                    {
                        distance+=(dis&1);
                        dis=(dis>>1);
                    }
                }
                //汉明距离distance计算完毕
                // cout<<"distance = "<
                if(distance < threshold_distance)
                {
                    m.trainIdx = j;
                    m.distance = distance;
                    // cout<
                    matches.push_back(m);
                } 
            }
        }
    }
    
    
    void pose_estimation_2d2d(vector<cv::KeyPoint>& keypoints1, vector<cv::KeyPoint>& keypoints2, vector<cv::DMatch>& matches, 
                                cv::Mat& R, cv::Mat& t, cv::Mat& F, cv::Mat& E)
    {
        cv::Mat K= cv::Mat::eye(3,3,CV_32FC1);
        K.at<float>(0,0)=520.9;
        K.at<float>(1,1)=521.0;
        K.at<float>(0,2)=325.1;
        K.at<float>(1,2)=249.7;
        vector<cv::Point2f> points1, points2;  //匹配的坐标
        for(int i=0;i<matches.size();i++)
        {
            points1.push_back(keypoints1[matches[i].queryIdx].pt);
            points2.push_back(keypoints2[matches[i].trainIdx].pt);
        }
        
        //! 计算基础矩阵F = K-T*E*K-1
        F = cv::findFundamentalMat(points1,points2,CV_FM_8POINT,CV_RANSAC, 3.0, 0.98); //8点法
        cout<<"F = "<<endl<<F<<endl<<endl;
    
        cv::Point2d principal_point(325.1,249.7);  //相机光心
        double f = 521; //焦距f
        //计算本质矩阵E= t^R
        E = cv::findEssentialMat(points1,points2,K);
        cout<<"E = "<<endl<<E<<endl<<endl;
        cv::Mat E2 = E.clone();
        E2.convertTo(E2,CV_32FC1);
        cv::Mat K1;
        cv::invert(K,K1);
    
        cout<<"K-T*E*K-1 = "<<endl<<(K1.t()*E2*K1)<<endl<<endl;
        cout<<"K-T*E*K-1 = "<<endl<<(K.inv().t()*E2*K.inv())<<endl<<endl;
    
        cv::Mat H = cv::findHomography(points1,points2,CV_RANSAC,3);
        cout<<"H = "<<endl<<H<<endl<<endl;
    
        //!!! 从本质矩阵E 恢复R 和t
        cv::recoverPose(E,points1,points2,cv::Mat::eye(3,3,CV_32FC1),R,t);
    }
    
    
    

你可能感兴趣的:(计算机视觉,opencv)