Tag deep-learning 一大堆深度学习论文

Tag deep-learning [159 articles] 

Recent papers classified by the tag deep-learning.
Search   Copy  Export   Sort  Hide Details

 

 Deep Learning without Poor Local Minima

  
(23 May 2016)
by  Kenji Kawaguchi
posted to  deep-learning learning-theory machine-learning by  memming on 2016-05-24 21:56:26    along with 1 person
Abstract
 

 Deep Patient: An Unsupervised Representation to Predict the Future of Patients from the Electronic Health Records

  
Scientific Reports, Vol. 6 (17 May 2016), 26094,  doi:10.1038/srep26094
by  Riccardo Miotto,  Li Li,  Brian A. Kidd,  Joel T. Dudley
posted to  deep-learning by  hans_meine on 2016-05-23 10:04:13 
 

 Deep learning

  
Nature, Vol. 521, No. 7553. (28 May 2015), pp. 436-444,  doi:10.1038/nature14539
by  Yann LeCun,  Yoshua Bengio,  Geoffrey Hinton
posted to  deep-learning neural-networks by  vankov  on 2016-05-22 21:20:13    along with 27 people
 

 Where Do Features Come From?

  
Cogn Sci, Vol. 38, No. 6. (1 August 2014), pp. 1078-1101,  doi:10.1111/cogs.12049
by  Geoffrey Hinton
posted to  deep-learning neural-networks by  vankov  on 2016-05-22 21:12:41    along with 1 group
Abstract
 

 Modeling language and cognition with deep unsupervised learning: a tutorial overview.

  
Frontiers in psychology, Vol. 4 (2013),  doi:10.3389/fpsyg.2013.00515
by  Marco Zorzi,  Alberto Testolin,  Ivilin P. Stoianov
posted to  bayesian deep-learning mirror-neurons by  vankov on 2016-05-22 21:10:19    along with 1 person
Abstract
 

 Deep Neural Networks as a Computational Model for Human Shape Sensitivity

  
PLoS Comput Biol, Vol. 12, No. 4. (28 April 2016), e1004896,  doi:10.1371/journal.pcbi.1004896
by  Jonas Kubilius,  Stefania Bracci,  Hans P. Op de Beeck
posted to  caffe deep-learning image neuroscience perception by  ajs625 on 2016-05-16 00:17:33 
Abstract
 

 Deep learning.

  
Nature, Vol. 521, No. 7553. (28 May 2015), pp. 436-444
by  Yann LeCun,  Yoshua Bengio,  Geoffrey Hinton
posted to  deep-learning by  assafzar on 2016-05-15 23:08:36    along with 1 person
Abstract Notes
 

 Basset: Learning the regulatory code of the accessible genome with deep convolutional neural networks

  
Genome Research (03 May 2016), gr.200535.115,  doi:10.1101/gr.200535.115
by  David R. Kelley,  Jasper Snoek,  John Rinn
posted to  deep-learning regulation by  pickw on 2016-05-07 17:35:27 
Abstract
 

 Mastering the game of Go with deep neural networks and tree search

  
Nature, Vol. 529, No. 7587. (28 January 2016), pp. 484-489,  doi:10.1038/nature16961
by  David Silver,  Aja Huang,  Chris J. Maddison,  et al.
posted to  ai deep-learning neural-networks by  vankov  on 2016-05-05 12:53:35    along with 14 people
 

 Deep Metric Learning via Lifted Structured Feature Embedding

  
(19 Nov 2015)
by  Hyun O. Song,  Yu Xiang,  Stefanie Jegelka,  Silvio Savarese
posted to  deep-learning by  angli on 2016-05-02 20:01:33 
Abstract
 

 Convergent Learning: Do different neural networks learn the same representations?

  
(28 Feb 2016)
by  Yixuan Li,  Jason Yosinski,  Jeff Clune,  Hod Lipson,  John Hopcroft
posted to  deep-learning feature image representation by  ajs625 on 2016-04-28 21:34:26 
Abstract
 

 A Taxonomy of Deep Convolutional Neural Nets for Computer Vision

  
Frontiers in Robotics and AI, Vol. 2 (25 Jan 2016),  doi:10.3389/frobt.2015.00036
by  Suraj Srinivas,  Ravi K. Sarvadevabhatla,  Konda R. Mopuri,  Nikita Prabhu,  Srinivas S. S. Kruthiventi,  R. Venkatesh Babu
posted to  deep-learning todo vision by  falex on 2016-04-27 08:44:51 
Abstract
 

 Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

  
(2 Mar 2015)
by  Sergey Ioffe,  Christian Szegedy
posted to  deep-learning by  hans_meine on 2016-04-24 12:24:16    along with 6 people
Abstract
 

 Human-level control through deep reinforcement learning

  
Nature, Vol. 518, No. 7540. (26 February 2015), pp. 529-533,  doi:10.1038/nature14236
by  Volodymyr Mnih,  Koray Kavukcuoglu,  David Silver,  et al.
posted to  2015 ai deep-learning game neural-network q-learning reinforcement-learning by  ddahlem  on 2016-04-22 13:37:41    along with 19 people and 2 groups
 

 Adding Gradient Noise Improves Learning for Very Deep Networks

  
(21 Nov 2015)
by  Arvind Neelakantan,  Luke Vilnis,  Quoc V. Le,  et al.
posted to  deep-learning gradient neural-network statistical-learning by  lehalle on 2016-04-10 17:54:43 
Abstract
 

The application of an ensemble of boosted Elman networks to time series prediction: a benchmark study

  
J Comput Intell, Vol. 3, No. 2. (2005), pp. 119-126
by  Chee P. Lim,  Wei Y. Goh
posted to  arma cnn convnet deep-learning neural-network time-series by  lehalle on 2016-04-06 11:13:01 
 

On the prediction of solar activity using different neural network models

  
In Annales Geophysicae, Vol. 14, No. 1. (1996)
by  Francoise Fessant,  Samy Bengio,  Daniel Collobert
posted to  arma cnn compression convnet deep-learning neural-network time-series by  lehalle on 2016-04-06 11:08:01 
 

 Identity Mappings in Deep Residual Networks

  
(16 Mar 2016)
by  Kaiming He,  Xiangyu Zhang,  Shaoqing Ren,  Jian Sun
posted to  deep-learning dlws101 by  hans_meine on 2016-04-01 21:08:03 
Abstract
 

 Deep Residual Learning for Image Recognition

  
(10 Dec 2015)
by  Kaiming He,  Xiangyu Zhang,  Shaoqing Ren,  Jian Sun
posted to  deep-learning dlws101 by  hans_meine on 2016-04-01 21:06:16    along with 5 people
Abstract
 

 Variational inference for Monte Carlo objectives

  
(22 Feb 2016)
by  Andriy Mnih,  Danilo J. Rezende
posted to  deep-learning latent-variable machine-learning mcmc statistics variational-bayes by  memming on 2016-03-25 03:19:27 
Abstract
 

 Discriminative Regularization for Generative Models

  
(15 Feb 2016)
by  Alex Lamb,  Vincent Dumoulin,  Aaron Courville
posted to  deep-learning math by  mathkann on 2016-03-24 13:53:11 
Abstract
 

 The Loss Surfaces of Multilayer Networks

  
(21 Jan 2015)
by  Anna Choromanska,  Mikael Henaff,  Michael Mathieu,  Gérard B. Arous,  Yann LeCun
posted to  deep-learning optimization by  lehalle on 2016-03-24 09:55:07    along with 2 people
Abstract
 

 Explicit information for category-orthogonal object properties increases along the ventral stream

  
Nat Neurosci, Vol. advance online publication (22 February 2016),  doi:10.1038/nn.4247
by  Ha Hong,  Daniel L. K. Yamins,  Najib J. Majaj,  James J. DiCarlo
posted to  convolutional-model deep-learning it object-recognition ventral-stream by  memming on 2016-03-21 20:40:19 
 

 Deep learning in neural networks: An overview

  
Neural Networks, Vol. 61 (8 January 2015), pp. 85-117,  doi:10.1016/j.neunet.2014.09.003
by  Jürgen Schmidhuber
posted to  deep-learning review by  pickw  on 2016-03-15 01:17:12    along with 10 people and 1 group
Abstract
 

 Spatio-Temporal Signatures to Predict Retinal Disease Recurrence

  
In Information Processing in Medical Imaging, Vol. 9123 (2015), pp. 152-163,  doi:10.1007/978-3-319-19992-4_12
by  Wolf-Dieter Vogl,  SebastianM Waldstein,  BiancaS Gerendas,  et al.
edited by  Sebastien Ourselin,  Daniel C. Alexander,  Carl-Fredrik Westin,  M. Jorge Cardoso
posted to  deep-learning by  hans_meine on 2016-03-14 16:14:24 
 

 Learning Physical Intuition of Block Towers by Example

  
(3 Mar 2016)
by  Adam Lerer,  Sam Gross,  Rob Fergus
posted to  ai deep-learning games by  mathkann on 2016-03-10 06:53:40 
Abstract
 

 Dynamic Memory Networks for Visual and Textual Question Answering

  
(4 Mar 2016)
by  Caiming Xiong,  Stephen Merity,  Richard Socher
posted to  ai deep-learning neural-networks by  mathkann on 2016-03-09 07:18:36    along with 1 person
Abstract
 

 Mapping visual features to semantic profiles for retrieval in medical imaging

  
In Computer Vision and Pattern Recognition (CVPR), 2015 IEEE Conference on (June 2015), pp. 457-465,  doi:10.1109/cvpr.2015.7298643
by  Johannes Hofmanninger,  Georg Langs
posted to  deep-learning by  hans_meine on 2016-03-04 13:28:46 
 

 Inferring Algorithmic Patterns with Stack-Augmented Recurrent Nets

  
(1 Jun 2015)
by  Armand Joulin,  Tomas Mikolov
posted to  deep-learning model sequence todo by  falex on 2016-03-01 15:30:14    along with 2 people
Abstract
 

 Using goal-driven deep learning models to understand sensory cortex

  
Nature Neuroscience, Vol. 19, No. 3. (23 February 2016), pp. 356-365,  doi:10.1038/nn.4244
by  Daniel L. K. Yamins,  James J. DiCarlo
posted to  cortex deep-learning model todo vision by  falex  on 2016-02-29 15:57:40    along with 2 people
 

 Black box variational inference for state space models

  
(23 Nov 2015)
by  Evan Archer,  Il M. Park,  Lars Buesing,  John Cunningham,  Liam Paninski
posted to  deep-learning machine-learning stochastic-gradient-descent-algorithm time-series variational-bayes by  memming on 2016-02-23 15:24:40 
Abstract
 

 Dropout: A Simple Way to Prevent Neural Networks from Overfitting

  
J. Mach. Learn. Res., Vol. 15, No. 1. (January 2014), pp. 1929-1958
by  Nitish Srivastava,  Geoffrey Hinton,  Alex Krizhevsky,  Ilya Sutskever,  Ruslan Salakhutdinov
posted to  deep-learning neural-network statistical-learning by  martinzokov  on 2016-02-20 01:00:47    along with 4 people and 1 group
Abstract
 

 Practical recommendations for gradient-based training of deep architectures

  
(16 Sep 2012)
by  Yoshua Bengio
posted to  deep-learning statistical-learning by  lehalle on 2016-02-12 22:02:07    along with 3 people
Abstract
 

 Exploring the Limits of Language Modeling

  
(11 Feb 2016)
by  Rafal Jozefowicz,  Oriol Vinyals,  Mike Schuster,  Noam Shazeer,  Yonghui Wu
posted to  deep-learning nlp rnn by  mathkann on 2016-02-09 12:22:03    along with 3 people
Abstract
 

 The Ebb and Flow of Deep Learning: a Theory of Local Learning

  
(22 Jun 2015)
by  Pierre Baldi,  Peter Sadowski
posted to  deep-learning local-learning-rule machine-learning theoretical-neuroscience by  memming on 2016-01-13 16:31:15 
Abstract
 

 Continuous control with deep reinforcement learning

  
(7 Jan 2016)
by  Timothy P. Lillicrap,  Jonathan J. Hunt,  Alexander Pritzel,  et al.
posted to  continuous-control deep-learning model-based-rl reinforcement by  memming on 2016-01-09 15:00:17    along with 2 people
Abstract
 

 Deep Learning for Content-Based Image Retrieval: A Comprehensive Study

  
In Proceedings of the 22Nd ACM International Conference on Multimedia (2014), pp. 157-166,  doi:10.1145/2647868.2654948
by  Ji Wan,  Dayong Wang,  Steven Chu Hong Hoi,  et al.
posted to  cbir deep-learning machine-learning review by  ajs625 on 2016-01-07 20:54:41 
Abstract
 

 Deep learning of binary hash codes for fast image retrieval

  
In Computer Vision and Pattern Recognition Workshops (CVPRW), 2015 IEEE Conference on (June 2015), pp. 27-35,  doi:10.1109/cvprw.2015.7301269
by  Kevin Lin,  Huei-Fang Yang,  Jen-Hao Hsiao,  Chu-Song Chen
posted to  cbir deep-learning hashing image by  ajs625 on 2016-01-07 20:52:02 
 

 Object Detectors Emerge in Deep Scene CNNs

  
(15 Apr 2015)
by  Bolei Zhou,  Aditya Khosla,  Agata Lapedriza,  Aude Oliva,  Antonio Torralba
posted to  computer-vision deep-learning by  assafzar on 2015-12-30 15:47:11 
Abstract
 

 Automatic detection of cell divisions (mitosis) in live-imaging microscopy images using Convolutional Neural Networks

  
In Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE (August 2015), pp. 743-746,  doi:10.1109/embc.2015.7318469
by  Anat Shkolyar,  Amit Gefen,  Dafna Benayahu,  Hayit Greenspan
posted to  collective-cell-migration deep-learning by  assafzar on 2015-12-30 15:39:03 
 

 Imagenet classification with deep convolutional neural networks

  
In Advances in Neural Information Processing Systems, Vol. 25 (2012)
by  Alex Krizhevsky,  Ilya Sutskever,  Geoffrey E. Hinton
posted to  classification cnn cv deep-learning imagenet by  ok1zjf on 2015-12-29 03:33:17  /   along with 9 people
Abstract
 

 Learning Visual Predictive Models of Physics for Playing Billiards

  
(23 Nov 2015)
by  Katerina Fragkiadaki,  Pulkit Agrawal,  Sergey Levine,  Jitendra Malik
posted to  computer-vision deep-learning iclr machine-learning physics video by  memming on 2015-12-22 21:14:30 
Abstract
 

 Stacked Attention Networks for Image Question Answering

  
(7 Nov 2015)
by  Zichao Yang,  Xiaodong He,  Jianfeng Gao,  Li Deng,  Alex Smola
posted to  deep-learning image machine-learning machine-teaching speech by  ajs625 on 2015-12-18 22:04:42 
Abstract
 

 Learning deep dynamical models from image pixels

  
(28 Oct 2014)
by  Niklas Wahlström,  Thomas B. Schön,  Marc P. Deisenroth
posted to  autoencoder deep-learning image latent-dynamics nonlinear-systems time-series video by  memming on 2015-12-16 16:40:37 
Abstract
 

 Hierarchical Variational Models

  
(7 Nov 2015)
by  Rajesh Ranganath,  Dustin Tran,  David M. Blei
posted to  bayesian deep-learning inference-network machine-learning variational-bayes by  memming on 2015-12-16 16:27:08    along with 1 person
Abstract
 

 Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks

  
(7 Jan 2016)
by  Alec Radford,  Luke Metz,  Soumith Chintala
posted to  adversarial-network cnn deep-learning iclr image by  memming on 2015-12-16 16:21:20    along with 3 people
Abstract
 

 Variational Auto-encoded Deep Gaussian Processes

  
(19 Nov 2015)
by  Zhenwen Dai,  Andreas Damianou,  Javier González,  Neil Lawrence
posted to  autoencoder deep-gaussian-processes deep-learning gaussian-process iclr variational-bayes by  memming on 2015-12-16 16:19:20 
Abstract
 

 Stochastic Optimization for Deep CCA via Nonlinear Orthogonal Iterations

  
(7 Oct 2015)
by  Weiran Wang,  Raman Arora,  Karen Livescu,  Nathan Srebro
posted to  cca deep-learning by  memming on 2015-12-16 15:55:15 
Abstract
 

 Why are deep nets reversible: A simple theory, with implications for training

  
(19 Nov 2015)
by  Sanjeev Arora,  Yingyu Liang,  Tengyu Ma
posted to  autoencoder deep-learning learning symmetry theoretical-neuroscience by  memming on 2015-12-16 15:52:40 
Abstract
 

 Deep multi-scale video prediction beyond mean square error

  
(23 Nov 2015)
by  Michael Mathieu,  Camille Couprie,  Yann LeCun
posted to  deep-learning machine-learning time-series video by  memming on 2015-12-16 15:31:55 
Abstract







Modeling Deep Temporal Dependencies with Recurrent Grammar Cells""

  
In Advances in Neural Information Processing Systems 27 (2014), pp. 1925-1933
by  Vincent Michalski,  Roland Memisevic,  Kishore Konda
edited by  Z. Ghahramani,  M. Welling,  C. Cortes,  N. D. Lawrence,  K. Q. Weinberger
posted to  autoencoder deep-learning lstm machine-learning nips recurrent-neural-network time-series video by  memming on 2015-12-16 15:20:43 
 

 Unsupervised Learning of Video Representations using LSTMs

  
(31 Mar 2015)
by  Nitish Srivastava,  Elman Mansimov,  Ruslan Salakhutdinov
posted to  autoencoder deep-learning icml lstm machine-learning time-series video by  memming on 2015-12-16 15:13:54    along with 4 people
Abstract
 

 Better Computer Go Player with Neural Network and Long-term Prediction

  
(26 Jan 2016)
by  Yuandong Tian,  Yan Zhu
posted to  deep-learning games go by  lehalle on 2015-12-09 17:57:52    along with 2 people
Abstract
 

 Fully Convolutional Networks for Semantic Segmentation

  
(8 Mar 2015)
by  Jonathan Long,  Evan Shelhamer,  Trevor Darrell
posted to  deep-learning by  hans_meine on 2015-12-04 19:12:45    along with 2 people
Abstract Notes
 

 Gradient Estimation Using Stochastic Computation Graphs

  
(13 Nov 2015)
by  John Schulman,  Nicolas Heess,  Theophane Weber,  Pieter Abbeel
posted to  deep-learning deep-mind machine-learning tool by  memming on 2015-12-04 15:27:11 
Abstract
 

 Deep Temporal Sigmoid Belief Networks for Sequence Modeling

  
(23 Sep 2015)
by  Zhe Gan,  Chunyuan Li,  Ricardo Henao,  David Carlson,  Lawrence Carin
posted to  deep-learning hmm latent-dynamics time-series variational-bayes by  memming on 2015-11-30 17:58:47 
Abstract
 

 Embed to Control: A Locally Linear Latent Dynamics Model for Control from Raw Images

  
(20 Nov 2015)
by  Manuel Watter,  Jost T. Springenberg,  Joschka Boedecker,  Martin Riedmiller
posted to  deep-learning latent-dynamics linear-dynamical-system nonlinear-systems optimal-control by  memming on 2015-11-30 17:40:21    along with 1 person
Abstract
 

 Variational Gaussian Process

  
(20 Nov 2015)
by  Dustin Tran,  Rajesh Ranganath,  David M. Blei
posted to  deep-learning gaussian-process latent-variable nonlinear variational-bayes by  memming on 2015-11-26 16:28:08    along with 1 person
Abstract
 

 SparkNet: Training Deep Networks in Spark

  
(26 Nov 2015)
by  Philipp Moritz,  Robert Nishihara,  Ion Stoica,  Michael I. Jordan
posted to  deep-learning machine-learning software spark by  mathkann on 2015-11-23 17:51:30    along with 3 people
Abstract
 

 Deep Kalman Filters

  
(16 Nov 2015)
by  Rahul G. Krishnan,  Uri Shalit,  David Sontag
posted to  deep-learning kalman-filter stochastic-gradient-descent-algorithm by  memming on 2015-11-18 21:41:24 
Abstract
 

 Sequence to Sequence Learning with Neural Networks

  
(14 Dec 2014)
by  Ilya Sutskever,  Oriol Vinyals,  Quoc V. Le
posted to  deep-learning nlp by  mathkann on 2015-11-04 06:49:05    along with 4 people
Abstract
 

 Privacy-Preserving Deep Learning

  
In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security (October 2015), pp. 1310-1321,  doi:10.1145/2810103.2813687
by  Reza Shokri,  Vitaly Shmatikov
posted to  deep-learning for:yuchenzhao machine-learning neural-networks privacy by  tnhh on 2015-10-15 06:58:13 
Abstract
 

 Predicting effects of noncoding variants with deep learning–based sequence model

  
Nature Methods, Vol. 12, No. 10. (24 August 2015), pp. 931-934,  doi:10.1038/nmeth.3547
by  Jian Zhou,  Olga G. Troyanskaya
posted to  deep-learning functional-annotation non-coding by  pickw  on 2015-10-14 19:08:24    along with 8 people and 1 group
 

 Curriculum Learning

  
In Proceedings of the 26th Annual International Conference on Machine Learning (2009), pp. 41-48,  doi:10.1145/1553374.1553380
by  Yoshua Bengio,  Jérôme Louradour,  Ronan Collobert,  Jason Weston
posted to  curriculum-learning deep-learning machine-learning by  memming on 2015-10-07 14:30:12    along with 2 people
Abstract
 

 High-order neural networks and kernel methods for peptide-MHC binding prediction

  
Bioinformatics, Vol. 31, No. 22. (15 November 2015), pp. 3600-3607,  doi:10.1093/bioinformatics/btv371
by  Pavel P. Kuksa,  Martin R. Min,  Rishabh Dugar,  Mark Gerstein
posted to  deep-learning interaction machine-learning protein-protein by  ajs625  on 2015-09-22 05:37:13    along with 1 person and 1 group
Abstract
 

 Deep Broad Learning - Big Models for Big Data

  
(4 Sep 2015)
by  Nayyar A. Zaidi,  Geoffrey I. Webb,  Mark J. Carman,  Francois Petitjean
posted to  bias broad-learning deep-learning machine-learning by  ajs625 on 2015-09-14 04:12:09 
Abstract
 

 Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning.

  
Nature biotechnology, Vol. 33, No. 8. (August 2015), pp. 831-838
by  Babak Alipanahi,  Andrew Delong,  Matthew T. Weirauch,  Brendan J. Frey
posted to  deep-learning dna-protein interaction machine-learning rna-protein by  ajs625 on 2015-09-12 22:53:03    along with 1 person
Abstract
 

 A Neural Algorithm of Artistic Style

  
(2 Sep 2015)
by  Leon A. Gatys,  Alexander S. Ecker,  Matthias Bethge
posted to  computer-vision deep-learning to-code visualization by  mathkann on 2015-09-01 09:39:59    along with 5 people
Abstract
 

 Quantum Deep Learning

  
(22 May 2015)
by  Nathan Wiebe,  Ashish Kapoor,  Krysta M. Svore
posted to  ai deep-learning quantum-computing by  mathkann on 2015-08-16 19:42:45    along with 2 people
Abstract
 

 Deep Learning for Single-View Instance Recognition

  
(29 Jul 2015)
by  David Held,  Sebastian Thrun,  Silvio Savarese
posted to  deep-learning by  noud88 on 2015-07-31 13:49:47 
Abstract
 

 Training Very Deep Networks

  
(22 Jul 2015)
by  Rupesh K. Srivastava,  Klaus Greff,  Jürgen Schmidhuber
posted to  deep-learning by  mathkann on 2015-07-23 09:30:53 
Abstract
 

 Unsupervised Learning on Neural Network Outputs

  
(7 Jul 2015)
by  Yao Lu
posted to  deep-learning by  mathkann on 2015-07-08 14:23:44 
Abstract
 

 Solving Verbal Comprehension Questions in IQ Test by Knowledge-Powered Word Embedding

  
(29 May 2015)
by  Huazheng Wang,  Bin Gao,  Jiang Bian,  Fei Tian,  Tie-Yan Liu
posted to  deep-learning by  hukkinen on 2015-06-16 16:12:14 
Abstract
 

 Variational Inference with Normalizing Flows

  
In Proceedings of The 32nd International Conference on Machine Learning (26 May 2015), pp. 1530-1538
by  Danilo J. Rezende,  Shakir Mohamed
posted to  deep-learning entropy icml invertible normalizing-flows variational-bayes by  memming on 2015-06-14 17:51:43 
Abstract
 

 Visualizing and Understanding Recurrent Networks

  
(17 Nov 2015)
by  Andrej Karpathy,  Justin Johnson,  Li Fei-Fei
posted to  deep-learning rnn by  mathkann on 2015-06-10 08:48:34    along with 2 people
Abstract
 

 A Critical Review of Recurrent Neural Networks for Sequence Learning

  
(29 Jun 2015)
by  Zachary C. Lipton
posted to  deep-learning rnn by  mathkann on 2015-06-03 07:28:02    along with 3 people
Abstract
 

 Blocks and Fuel: Frameworks for deep learning

  
(1 Jun 2015)
by  Bart van Merriënboer,  Dzmitry Bahdanau,  Vincent Dumoulin,  et al.
posted to  deep-learning frameworks python by  mathkann on 2015-06-02 06:21:36 
Abstract
 

Deep AutoRegressive Networks

  
In Proceedings of the 31st International Conference on Machine Learning (ICML-14) (2014), pp. 1242-1250
by  Karol Gregor,  Ivo Danihelka,  Andriy Mnih,  Charles Blundell,  Daan Wierstra
edited by  Tony Jebara,  Eric P. Xing
posted to  autoregressive deep-learning time-series by  memming on 2015-05-29 23:35:44 
Abstract
 

 Building high-level features using large scale unsupervised learning

  
In In International Conference on Machine Learning, 2012. 103
by  Quoc V. Le,  Rajat Monga,  Matthieu Devin,  et al.
posted to  deep-learning neural-networks by  vankov on 2015-05-25 08:47:23 
Abstract
 

 Reducing the dimensionality of data with neural networks.

  
Science (New York, N.Y.), Vol. 313, No. 5786. (28 July 2006), pp. 504-507,  doi:10.1126/science.1127647
by  G. E. Hinton,  R. R. Salakhutdinov
posted to  deep-learning machine-learning print by  falex  on 2015-05-12 10:18:44    along with 50 people and 10 groups
Abstract
 

 Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification

  
(6 Feb 2015)
by  Kaiming He,  Xiangyu Zhang,  Shaoqing Ren,  Jian Sun
posted to  deep-learning by  mathkann  on 2015-05-06 05:03:15    along with 3 people and 1 group
Abstract
 

 Low precision storage for deep learning

  
(3 Apr 2015)
by  Matthieu Courbariaux,  Yoshua Bengio,  Jean-Pierre David
posted to  deep-learning by  mathkann on 2015-04-29 19:36:28    along with 1 person
Abstract
 

 Deep Neural Nets as a Method for Quantitative Structure–Activity Relationships

  
J. Chem. Inf. Model., Vol. 55, No. 2. (23 February 2015), pp. 263-274,  doi:10.1021/ci500747n
by  Junshui Ma,  Robert P. Sheridan,  Andy Liaw,  George E. Dahl,  Vladimir Svetnik
posted to  deep-learning by  babakap on 2015-04-16 20:09:14 
Abstract
 

Theano: a CPU and GPU Math Expression Compiler

  
In Proceedings of the Python for Scientific Computing Conference ({SciPy}) (June 2010)
by  James Bergstra,  Olivier Breuleux,  Frédéric Bastien,  et al.
posted to  deep-learning gpu-computing machine-learning theano by  chadwcarlson on 2015-04-14 15:28:58    along with 1 person
Abstract
 

 Theano: new features and speed improvements

  
(23 Nov 2012)
by  Frédéric Bastien,  Pascal Lamblin,  Razvan Pascanu,  et al.
posted to  deep-learning machine-learning psychophysics theano by  chadwcarlson on 2015-04-14 15:27:34    along with 3 people
Abstract
 

 Generative models for discovering sparse distributed representations

  
Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, Vol. 352, No. 1358. (29 August 1997), pp. 1177-1190,  doi:10.1098/rstb.1997.0101
by  Geoffrey E. Hinton,  Zoubin Ghahramani
posted to  deep-learning by  chadwcarlson on 2015-04-12 12:04:19    along with 4 people
Abstract
 

 On the Computational Efficiency of Training Neural Networks

  
(28 Oct 2014)
by  Roi Livni,  Shai Shalev-Shwartz,  Ohad Shamir
posted to  deep-learning by  chadwcarlson on 2015-04-12 12:03:36    along with 3 people
Abstract
 

 Reweighted Wake-Sleep

  
(11 Jun 2014)
by  Jörg Bornschein,  Yoshua Bengio
posted to  deep-learning by  chadwcarlson on 2015-04-12 12:03:07    along with 1 person
Abstract
 

 Learning Stochastic Recurrent Networks

  
(5 Mar 2015)
by  Justin Bayer,  Christian Osendorfer
posted to  deep-learning by  chadwcarlson on 2015-04-12 11:47:42    along with 3 people
Abstract
 

 Towards Biologically Plausible Deep Learning

  
(14 Feb 2015)
by  Yoshua Bengio,  Dong-Hyun Lee,  Jorg Bornschein,  Zhouhan Lin
posted to  deep-learning by  chadwcarlson on 2015-04-12 11:47:15    along with 2 people
Abstract
 

 2006: Celebrating 75 years of AI - History and Outlook: the Next 25 Years

  
(31 Aug 2007)
by  Juergen Schmidhuber
posted to  agi deep-learning by  chadwcarlson  on 2015-04-12 11:17:52    along with 5 people and 1 group
Abstract
 

 Simple Algorithmic Principles of Discovery, Subjective Beauty, Selective Attention, Curiosity & Creativity

  
(5 Sep 2007)
by  Juergen Schmidhuber
posted to  deep-learning machine-learning by  chadwcarlson  on 2015-04-12 11:17:21    along with 5 people and 2 groups
Abstract
 

 Coherence Progress: A Measure of Interestingness Based on Fixed Compressors Artificial General Intelligence

  
Vol. 6830 (2011), pp. 21-30,  doi:10.1007/978-3-642-22887-2_3
by  Tom Schaul,  Leo Pape,  Tobias Glasmachers,  et al.
edited by  Jürgen Schmidhuber,  Kristinn Thórisson,  Moshe Looks,  Jürgen Schmidhuber,  Kristinn R. Thórisson,  Moshe Looks
posted to  agi deep-learning by  chadwcarlson on 2015-04-12 11:15:40    along with 1 person
Abstract
 

 Visualizing and Understanding Convolutional Networks

  
(28 Nov 2013)
by  Matthew D. Zeiler,  Rob Fergus
posted to  convolutional-nn deep-learning machine-learning visualization by  chadwcarlson to the group  Machine Perception & Cognitive Robotics at FAU on 2015-04-12 11:04:29  along with 7 people and 1 group
Abstract
 

 Greedy layer-wise training of deep networks

  
In In NIPS (2007)
by  Yoshua Bengio,  Pascal Lamblin,  Dan Popovici,  Hugo Larochelle,  Université De Montréal,  Montréal Québec
posted to  deep-learning dnn learning neural-networks by  chadwcarlson to the group  Machine Perception & Cognitive Robotics at FAU on 2015-04-12 11:01:54    along with 10 people
Abstract
 

 Why Does Unsupervised Pre-training Help Deep Learning?

  
Journal of Machine Learning Research
by  Dumitru Erhan,  Yoshua Bengio,  Aaron Courville,  Pierre-Antoine Manzagol,  Pascal Vincent,  Samy Bengio
posted to  deep-learning by  chadwcarlson to the group  Machine Perception & Cognitive Robotics at FAU on 2015-04-12 11:00:53    along with 9 people and 1 group
Abstract
 

 Deep learning from temporal coherence in video

  
In Proceedings of the 26th Annual International Conference on Machine Learning (2009), pp. 737-744,  doi:10.1145/1553374.1553469
by  Hossein Mobahi,  Ronan Collobert,  Jason Weston
posted to  deep-learning motion by  chadwcarlson to the group  Machine Perception & Cognitive Robotics at FAU on 2015-04-12 10:59:35    along with 5 people
Abstract
 

 A Simple Way to Initialize Recurrent Networks of Rectified Linear Units

  
(7 Apr 2015)
by  Quoc V. Le,  Navdeep Jaitly,  Geoffrey E. Hinton
posted to  deep-learning nonlinear-systems rectified-linear recurrent-neural-network by  memming on 2015-04-09 02:29:47    along with 1 person
Abstract
 

 RNA splicing. The human splicing code reveals new insights into the genetic determinants of disease.

  
Science (New York, N.Y.), Vol. 347, No. 6218. (9 January 2015), 1254806,  doi:10.1126/science.1254806
by  Hui Y. Xiong,  Babak Alipanahi,  Leo J. Lee,  et al.
posted to  alternative-splicing deep-learning eqtl machine-learning quantitative-trait by  pickw  on 2015-04-08 03:47:39    along with 22 people and 3 groups
Abstract
 

 Computational intelligence techniques in bioinformatics.

  
Computational biology and chemistry, Vol. 47 (December 2013), pp. 37-47
by  Aboul Ella E. Hassanien,  Eiman Tamah T. Al-Shammari,  Neveen I. Ghali
posted to  ai bioinf deep-learning fuzzy ml by  guhjy on 2015-03-28 04:49:38 
Abstract

Tag deep-learning [159 articles] 

Recent papers classified by the tag deep-learning.
Search   Copy  Export   Sort  Hide Details
 

Modeling Deep Temporal Dependencies with Recurrent Grammar Cells""

  
In Advances in Neural Information Processing Systems 27 (2014), pp. 1925-1933
by  Vincent Michalski,  Roland Memisevic,  Kishore Konda
edited by  Z. Ghahramani,  M. Welling,  C. Cortes,  N. D. Lawrence,  K. Q. Weinberger
posted to  autoencoder deep-learning lstm machine-learning nips recurrent-neural-network time-series video by  memming on 2015-12-16 15:20:43 
 

 Unsupervised Learning of Video Representations using LSTMs

  
(31 Mar 2015)
by  Nitish Srivastava,  Elman Mansimov,  Ruslan Salakhutdinov
posted to  autoencoder deep-learning icml lstm machine-learning time-series video by  memming on 2015-12-16 15:13:54    along with 4 people
Abstract
 

 Better Computer Go Player with Neural Network and Long-term Prediction

  
(26 Jan 2016)
by  Yuandong Tian,  Yan Zhu
posted to  deep-learning games go by  lehalle on 2015-12-09 17:57:52    along with 2 people
Abstract
 

 Fully Convolutional Networks for Semantic Segmentation

  
(8 Mar 2015)
by  Jonathan Long,  Evan Shelhamer,  Trevor Darrell
posted to  deep-learning by  hans_meine on 2015-12-04 19:12:45    along with 2 people
Abstract Notes
 

 Gradient Estimation Using Stochastic Computation Graphs

  
(13 Nov 2015)
by  John Schulman,  Nicolas Heess,  Theophane Weber,  Pieter Abbeel
posted to  deep-learning deep-mind machine-learning tool by  memming on 2015-12-04 15:27:11 
Abstract
 

 Deep Temporal Sigmoid Belief Networks for Sequence Modeling

  
(23 Sep 2015)
by  Zhe Gan,  Chunyuan Li,  Ricardo Henao,  David Carlson,  Lawrence Carin
posted to  deep-learning hmm latent-dynamics time-series variational-bayes by  memming on 2015-11-30 17:58:47 
Abstract
 

 Embed to Control: A Locally Linear Latent Dynamics Model for Control from Raw Images

  
(20 Nov 2015)
by  Manuel Watter,  Jost T. Springenberg,  Joschka Boedecker,  Martin Riedmiller
posted to  deep-learning latent-dynamics linear-dynamical-system nonlinear-systems optimal-control by  memming on 2015-11-30 17:40:21    along with 1 person
Abstract
 

 Variational Gaussian Process

  
(20 Nov 2015)
by  Dustin Tran,  Rajesh Ranganath,  David M. Blei
posted to  deep-learning gaussian-process latent-variable nonlinear variational-bayes by  memming on 2015-11-26 16:28:08    along with 1 person
Abstract
 

 SparkNet: Training Deep Networks in Spark

  
(26 Nov 2015)
by  Philipp Moritz,  Robert Nishihara,  Ion Stoica,  Michael I. Jordan
posted to  deep-learning machine-learning software spark by  mathkann on 2015-11-23 17:51:30    along with 3 people
Abstract
 

 Deep Kalman Filters

  
(16 Nov 2015)
by  Rahul G. Krishnan,  Uri Shalit,  David Sontag
posted to  deep-learning kalman-filter stochastic-gradient-descent-algorithm by  memming on 2015-11-18 21:41:24 
Abstract
 

 Sequence to Sequence Learning with Neural Networks

  
(14 Dec 2014)
by  Ilya Sutskever,  Oriol Vinyals,  Quoc V. Le
posted to  deep-learning nlp by  mathkann on 2015-11-04 06:49:05    along with 4 people
Abstract
 

 Privacy-Preserving Deep Learning

  
In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security (October 2015), pp. 1310-1321,  doi:10.1145/2810103.2813687
by  Reza Shokri,  Vitaly Shmatikov
posted to  deep-learning for:yuchenzhao machine-learning neural-networks privacy by  tnhh on 2015-10-15 06:58:13 
Abstract
 

 Predicting effects of noncoding variants with deep learning–based sequence model

  
Nature Methods, Vol. 12, No. 10. (24 August 2015), pp. 931-934,  doi:10.1038/nmeth.3547
by  Jian Zhou,  Olga G. Troyanskaya
posted to  deep-learning functional-annotation non-coding by  pickw  on 2015-10-14 19:08:24    along with 8 people and 1 group
 

 Curriculum Learning

  
In Proceedings of the 26th Annual International Conference on Machine Learning (2009), pp. 41-48,  doi:10.1145/1553374.1553380
by  Yoshua Bengio,  Jérôme Louradour,  Ronan Collobert,  Jason Weston
posted to  curriculum-learning deep-learning machine-learning by  memming on 2015-10-07 14:30:12    along with 2 people
Abstract
 

 High-order neural networks and kernel methods for peptide-MHC binding prediction

  
Bioinformatics, Vol. 31, No. 22. (15 November 2015), pp. 3600-3607,  doi:10.1093/bioinformatics/btv371
by  Pavel P. Kuksa,  Martin R. Min,  Rishabh Dugar,  Mark Gerstein
posted to  deep-learning interaction machine-learning protein-protein by  ajs625  on 2015-09-22 05:37:13    along with 1 person and 1 group
Abstract
 

 Deep Broad Learning - Big Models for Big Data

  
(4 Sep 2015)
by  Nayyar A. Zaidi,  Geoffrey I. Webb,  Mark J. Carman,  Francois Petitjean
posted to  bias broad-learning deep-learning machine-learning by  ajs625 on 2015-09-14 04:12:09 
Abstract
 

 Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning.

  
Nature biotechnology, Vol. 33, No. 8. (August 2015), pp. 831-838
by  Babak Alipanahi,  Andrew Delong,  Matthew T. Weirauch,  Brendan J. Frey
posted to  deep-learning dna-protein interaction machine-learning rna-protein by  ajs625 on 2015-09-12 22:53:03    along with 1 person
Abstract
 

 A Neural Algorithm of Artistic Style

  
(2 Sep 2015)
by  Leon A. Gatys,  Alexander S. Ecker,  Matthias Bethge
posted to  computer-vision deep-learning to-code visualization by  mathkann on 2015-09-01 09:39:59    along with 5 people
Abstract
 

 Quantum Deep Learning

  
(22 May 2015)
by  Nathan Wiebe,  Ashish Kapoor,  Krysta M. Svore
posted to  ai deep-learning quantum-computing by  mathkann on 2015-08-16 19:42:45    along with 2 people
Abstract
 

 Deep Learning for Single-View Instance Recognition

  
(29 Jul 2015)
by  David Held,  Sebastian Thrun,  Silvio Savarese
posted to  deep-learning by  noud88 on 2015-07-31 13:49:47 
Abstract
 

 Training Very Deep Networks

  
(22 Jul 2015)
by  Rupesh K. Srivastava,  Klaus Greff,  Jürgen Schmidhuber
posted to  deep-learning by  mathkann on 2015-07-23 09:30:53 
Abstract
 

 Unsupervised Learning on Neural Network Outputs

  
(7 Jul 2015)
by  Yao Lu
posted to  deep-learning by  mathkann on 2015-07-08 14:23:44 
Abstract
 

 Solving Verbal Comprehension Questions in IQ Test by Knowledge-Powered Word Embedding

  
(29 May 2015)
by  Huazheng Wang,  Bin Gao,  Jiang Bian,  Fei Tian,  Tie-Yan Liu
posted to  deep-learning by  hukkinen on 2015-06-16 16:12:14 
Abstract
 

 Variational Inference with Normalizing Flows

  
In Proceedings of The 32nd International Conference on Machine Learning (26 May 2015), pp. 1530-1538
by  Danilo J. Rezende,  Shakir Mohamed
posted to  deep-learning entropy icml invertible normalizing-flows variational-bayes by  memming on 2015-06-14 17:51:43 
Abstract
 

 Visualizing and Understanding Recurrent Networks

  
(17 Nov 2015)
by  Andrej Karpathy,  Justin Johnson,  Li Fei-Fei
posted to  deep-learning rnn by  mathkann on 2015-06-10 08:48:34    along with 2 people
Abstract
 

 A Critical Review of Recurrent Neural Networks for Sequence Learning

  
(29 Jun 2015)
by  Zachary C. Lipton
posted to  deep-learning rnn by  mathkann on 2015-06-03 07:28:02    along with 3 people
Abstract
 

 Blocks and Fuel: Frameworks for deep learning

  
(1 Jun 2015)
by  Bart van Merriënboer,  Dzmitry Bahdanau,  Vincent Dumoulin,  et al.
posted to  deep-learning frameworks python by  mathkann on 2015-06-02 06:21:36 
Abstract
 

Deep AutoRegressive Networks

  
In Proceedings of the 31st International Conference on Machine Learning (ICML-14) (2014), pp. 1242-1250
by  Karol Gregor,  Ivo Danihelka,  Andriy Mnih,  Charles Blundell,  Daan Wierstra
edited by  Tony Jebara,  Eric P. Xing
posted to  autoregressive deep-learning time-series by  memming on 2015-05-29 23:35:44 
Abstract
 

 Building high-level features using large scale unsupervised learning

  
In In International Conference on Machine Learning, 2012. 103
by  Quoc V. Le,  Rajat Monga,  Matthieu Devin,  et al.
posted to  deep-learning neural-networks by  vankov on 2015-05-25 08:47:23 
Abstract
 

 Reducing the dimensionality of data with neural networks.

  
Science (New York, N.Y.), Vol. 313, No. 5786. (28 July 2006), pp. 504-507,  doi:10.1126/science.1127647
by  G. E. Hinton,  R. R. Salakhutdinov
posted to  deep-learning machine-learning print by  falex  on 2015-05-12 10:18:44    along with 50 people and 10 groups
Abstract
 

 Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification

  
(6 Feb 2015)
by  Kaiming He,  Xiangyu Zhang,  Shaoqing Ren,  Jian Sun
posted to  deep-learning by  mathkann  on 2015-05-06 05:03:15    along with 3 people and 1 group
Abstract
 

 Low precision storage for deep learning

  
(3 Apr 2015)
by  Matthieu Courbariaux,  Yoshua Bengio,  Jean-Pierre David
posted to  deep-learning by  mathkann on 2015-04-29 19:36:28    along with 1 person
Abstract
 

 Deep Neural Nets as a Method for Quantitative Structure–Activity Relationships

  
J. Chem. Inf. Model., Vol. 55, No. 2. (23 February 2015), pp. 263-274,  doi:10.1021/ci500747n
by  Junshui Ma,  Robert P. Sheridan,  Andy Liaw,  George E. Dahl,  Vladimir Svetnik
posted to  deep-learning by  babakap on 2015-04-16 20:09:14 
Abstract
 

Theano: a CPU and GPU Math Expression Compiler

  
In Proceedings of the Python for Scientific Computing Conference ({SciPy}) (June 2010)
by  James Bergstra,  Olivier Breuleux,  Frédéric Bastien,  et al.
posted to  deep-learning gpu-computing machine-learning theano by  chadwcarlson on 2015-04-14 15:28:58    along with 1 person
Abstract
 

 Theano: new features and speed improvements

  
(23 Nov 2012)
by  Frédéric Bastien,  Pascal Lamblin,  Razvan Pascanu,  et al.
posted to  deep-learning machine-learning psychophysics theano by  chadwcarlson on 2015-04-14 15:27:34    along with 3 people
Abstract
 

 Generative models for discovering sparse distributed representations

  
Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, Vol. 352, No. 1358. (29 August 1997), pp. 1177-1190,  doi:10.1098/rstb.1997.0101
by  Geoffrey E. Hinton,  Zoubin Ghahramani
posted to  deep-learning by  chadwcarlson on 2015-04-12 12:04:19    along with 4 people
Abstract
 

 On the Computational Efficiency of Training Neural Networks

  
(28 Oct 2014)
by  Roi Livni,  Shai Shalev-Shwartz,  Ohad Shamir
posted to  deep-learning by  chadwcarlson on 2015-04-12 12:03:36    along with 3 people
Abstract
 

 Reweighted Wake-Sleep

  
(11 Jun 2014)
by  Jörg Bornschein,  Yoshua Bengio
posted to  deep-learning by  chadwcarlson on 2015-04-12 12:03:07    along with 1 person
Abstract
 

 Learning Stochastic Recurrent Networks

  
(5 Mar 2015)
by  Justin Bayer,  Christian Osendorfer
posted to  deep-learning by  chadwcarlson on 2015-04-12 11:47:42    along with 3 people
Abstract
 

 Towards Biologically Plausible Deep Learning

  
(14 Feb 2015)
by  Yoshua Bengio,  Dong-Hyun Lee,  Jorg Bornschein,  Zhouhan Lin
posted to  deep-learning by  chadwcarlson on 2015-04-12 11:47:15    along with 2 people
Abstract
 

 2006: Celebrating 75 years of AI - History and Outlook: the Next 25 Years

  
(31 Aug 2007)
by  Juergen Schmidhuber
posted to  agi deep-learning by  chadwcarlson  on 2015-04-12 11:17:52    along with 5 people and 1 group
Abstract
 

 Simple Algorithmic Principles of Discovery, Subjective Beauty, Selective Attention, Curiosity & Creativity

  
(5 Sep 2007)
by  Juergen Schmidhuber
posted to  deep-learning machine-learning by  chadwcarlson  on 2015-04-12 11:17:21    along with 5 people and 2 groups
Abstract
 

 Coherence Progress: A Measure of Interestingness Based on Fixed Compressors Artificial General Intelligence

  
Vol. 6830 (2011), pp. 21-30,  doi:10.1007/978-3-642-22887-2_3
by  Tom Schaul,  Leo Pape,  Tobias Glasmachers,  et al.
edited by  Jürgen Schmidhuber,  Kristinn Thórisson,  Moshe Looks,  Jürgen Schmidhuber,  Kristinn R. Thórisson,  Moshe Looks
posted to  agi deep-learning by  chadwcarlson on 2015-04-12 11:15:40    along with 1 person
Abstract
 

 Visualizing and Understanding Convolutional Networks

  
(28 Nov 2013)
by  Matthew D. Zeiler,  Rob Fergus
posted to  convolutional-nn deep-learning machine-learning visualization by  chadwcarlson to the group  Machine Perception & Cognitive Robotics at FAU on 2015-04-12 11:04:29  along with 7 people and 1 group
Abstract
 

 Greedy layer-wise training of deep networks

  
In In NIPS (2007)
by  Yoshua Bengio,  Pascal Lamblin,  Dan Popovici,  Hugo Larochelle,  Université De Montréal,  Montréal Québec
posted to  deep-learning dnn learning neural-networks by  chadwcarlson to the group  Machine Perception & Cognitive Robotics at FAU on 2015-04-12 11:01:54    along with 10 people
Abstract
 

 Why Does Unsupervised Pre-training Help Deep Learning?

  
Journal of Machine Learning Research
by  Dumitru Erhan,  Yoshua Bengio,  Aaron Courville,  Pierre-Antoine Manzagol,  Pascal Vincent,  Samy Bengio
posted to  deep-learning by  chadwcarlson to the group  Machine Perception & Cognitive Robotics at FAU on 2015-04-12 11:00:53    along with 9 people and 1 group
Abstract
 

 Deep learning from temporal coherence in video

  
In Proceedings of the 26th Annual International Conference on Machine Learning (2009), pp. 737-744,  doi:10.1145/1553374.1553469
by  Hossein Mobahi,  Ronan Collobert,  Jason Weston
posted to  deep-learning motion by  chadwcarlson to the group  Machine Perception & Cognitive Robotics at FAU on 2015-04-12 10:59:35    along with 5 people
Abstract
 

 A Simple Way to Initialize Recurrent Networks of Rectified Linear Units

  
(7 Apr 2015)
by  Quoc V. Le,  Navdeep Jaitly,  Geoffrey E. Hinton
posted to  deep-learning nonlinear-systems rectified-linear recurrent-neural-network by  memming on 2015-04-09 02:29:47    along with 1 person
Abstract
 

 RNA splicing. The human splicing code reveals new insights into the genetic determinants of disease.

  
Science (New York, N.Y.), Vol. 347, No. 6218. (9 January 2015), 1254806,  doi:10.1126/science.1254806
by  Hui Y. Xiong,  Babak Alipanahi,  Leo J. Lee,  et al.
posted to  alternative-splicing deep-learning eqtl machine-learning quantitative-trait by  pickw  on 2015-04-08 03:47:39    along with 22 people and 3 groups
Abstract
 

 Computational intelligence techniques in bioinformatics.

  
Computational biology and chemistry, Vol. 47 (December 2013), pp. 37-47
by  Aboul Ella E. Hassanien,  Eiman Tamah T. Al-Shammari,  Neveen I. Ghali
posted to  ai bioinf deep-learning fuzzy ml by  guhjy on 2015-03-28 04:49:38 
Abstract




Modeling Deep Temporal Dependencies with Recurrent Grammar Cells""

  
In Advances in Neural Information Processing Systems 27 (2014), pp. 1925-1933
by  Vincent Michalski,  Roland Memisevic,  Kishore Konda
edited by  Z. Ghahramani,  M. Welling,  C. Cortes,  N. D. Lawrence,  K. Q. Weinberger
posted to  autoencoder deep-learning lstm machine-learning nips recurrent-neural-network time-series video by  memming on 2015-12-16 15:20:43 
 

 Unsupervised Learning of Video Representations using LSTMs

  
(31 Mar 2015)
by  Nitish Srivastava,  Elman Mansimov,  Ruslan Salakhutdinov
posted to  autoencoder deep-learning icml lstm machine-learning time-series video by  memming on 2015-12-16 15:13:54    along with 4 people
Abstract
 

 Better Computer Go Player with Neural Network and Long-term Prediction

  
(26 Jan 2016)
by  Yuandong Tian,  Yan Zhu
posted to  deep-learning games go by  lehalle on 2015-12-09 17:57:52    along with 2 people
Abstract
 

 Fully Convolutional Networks for Semantic Segmentation

  
(8 Mar 2015)
by  Jonathan Long,  Evan Shelhamer,  Trevor Darrell
posted to  deep-learning by  hans_meine on 2015-12-04 19:12:45    along with 2 people
Abstract Notes
 

 Gradient Estimation Using Stochastic Computation Graphs

  
(13 Nov 2015)
by  John Schulman,  Nicolas Heess,  Theophane Weber,  Pieter Abbeel
posted to  deep-learning deep-mind machine-learning tool by  memming on 2015-12-04 15:27:11 
Abstract
 

 Deep Temporal Sigmoid Belief Networks for Sequence Modeling

  
(23 Sep 2015)
by  Zhe Gan,  Chunyuan Li,  Ricardo Henao,  David Carlson,  Lawrence Carin
posted to  deep-learning hmm latent-dynamics time-series variational-bayes by  memming on 2015-11-30 17:58:47 
Abstract
 

 Embed to Control: A Locally Linear Latent Dynamics Model for Control from Raw Images

  
(20 Nov 2015)
by  Manuel Watter,  Jost T. Springenberg,  Joschka Boedecker,  Martin Riedmiller
posted to  deep-learning latent-dynamics linear-dynamical-system nonlinear-systems optimal-control by  memming on 2015-11-30 17:40:21    along with 1 person
Abstract
 

 Variational Gaussian Process

  
(20 Nov 2015)
by  Dustin Tran,  Rajesh Ranganath,  David M. Blei
posted to  deep-learning gaussian-process latent-variable nonlinear variational-bayes by  memming on 2015-11-26 16:28:08    along with 1 person
Abstract
 

 SparkNet: Training Deep Networks in Spark

  
(26 Nov 2015)
by  Philipp Moritz,  Robert Nishihara,  Ion Stoica,  Michael I. Jordan
posted to  deep-learning machine-learning software spark by  mathkann on 2015-11-23 17:51:30    along with 3 people
Abstract
 

 Deep Kalman Filters

  
(16 Nov 2015)
by  Rahul G. Krishnan,  Uri Shalit,  David Sontag
posted to  deep-learning kalman-filter stochastic-gradient-descent-algorithm by  memming on 2015-11-18 21:41:24 
Abstract
 

 Sequence to Sequence Learning with Neural Networks

  
(14 Dec 2014)
by  Ilya Sutskever,  Oriol Vinyals,  Quoc V. Le
posted to  deep-learning nlp by  mathkann on 2015-11-04 06:49:05    along with 4 people
Abstract
 

 Privacy-Preserving Deep Learning

  
In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security (October 2015), pp. 1310-1321,  doi:10.1145/2810103.2813687
by  Reza Shokri,  Vitaly Shmatikov
posted to  deep-learning for:yuchenzhao machine-learning neural-networks privacy by  tnhh on 2015-10-15 06:58:13 
Abstract
 

 Predicting effects of noncoding variants with deep learning–based sequence model

  
Nature Methods, Vol. 12, No. 10. (24 August 2015), pp. 931-934,  doi:10.1038/nmeth.3547
by  Jian Zhou,  Olga G. Troyanskaya
posted to  deep-learning functional-annotation non-coding by  pickw  on 2015-10-14 19:08:24    along with 8 people and 1 group
 

 Curriculum Learning

  
In Proceedings of the 26th Annual International Conference on Machine Learning (2009), pp. 41-48,  doi:10.1145/1553374.1553380
by  Yoshua Bengio,  Jérôme Louradour,  Ronan Collobert,  Jason Weston
posted to  curriculum-learning deep-learning machine-learning by  memming on 2015-10-07 14:30:12    along with 2 people
Abstract
 

 High-order neural networks and kernel methods for peptide-MHC binding prediction

  
Bioinformatics, Vol. 31, No. 22. (15 November 2015), pp. 3600-3607,  doi:10.1093/bioinformatics/btv371
by  Pavel P. Kuksa,  Martin R. Min,  Rishabh Dugar,  Mark Gerstein
posted to  deep-learning interaction machine-learning protein-protein by  ajs625  on 2015-09-22 05:37:13    along with 1 person and 1 group
Abstract
 

 Deep Broad Learning - Big Models for Big Data

  
(4 Sep 2015)
by  Nayyar A. Zaidi,  Geoffrey I. Webb,  Mark J. Carman,  Francois Petitjean
posted to  bias broad-learning deep-learning machine-learning by  ajs625 on 2015-09-14 04:12:09 
Abstract
 

 Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning.

  
Nature biotechnology, Vol. 33, No. 8. (August 2015), pp. 831-838
by  Babak Alipanahi,  Andrew Delong,  Matthew T. Weirauch,  Brendan J. Frey
posted to  deep-learning dna-protein interaction machine-learning rna-protein by  ajs625 on 2015-09-12 22:53:03    along with 1 person
Abstract
 

 A Neural Algorithm of Artistic Style

  
(2 Sep 2015)
by  Leon A. Gatys,  Alexander S. Ecker,  Matthias Bethge
posted to  computer-vision deep-learning to-code visualization by  mathkann on 2015-09-01 09:39:59    along with 5 people
Abstract
 

 Quantum Deep Learning

  
(22 May 2015)
by  Nathan Wiebe,  Ashish Kapoor,  Krysta M. Svore
posted to  ai deep-learning quantum-computing by  mathkann on 2015-08-16 19:42:45    along with 2 people
Abstract
 

 Deep Learning for Single-View Instance Recognition

  
(29 Jul 2015)
by  David Held,  Sebastian Thrun,  Silvio Savarese
posted to  deep-learning by  noud88 on 2015-07-31 13:49:47 
Abstract
 

 Training Very Deep Networks

  
(22 Jul 2015)
by  Rupesh K. Srivastava,  Klaus Greff,  Jürgen Schmidhuber
posted to  deep-learning by  mathkann on 2015-07-23 09:30:53 
Abstract
 

 Unsupervised Learning on Neural Network Outputs

  
(7 Jul 2015)
by  Yao Lu
posted to  deep-learning by  mathkann on 2015-07-08 14:23:44 
Abstract
 

 Solving Verbal Comprehension Questions in IQ Test by Knowledge-Powered Word Embedding

  
(29 May 2015)
by  Huazheng Wang,  Bin Gao,  Jiang Bian,  Fei Tian,  Tie-Yan Liu
posted to  deep-learning by  hukkinen on 2015-06-16 16:12:14 
Abstract
 

 Variational Inference with Normalizing Flows

  
In Proceedings of The 32nd International Conference on Machine Learning (26 May 2015), pp. 1530-1538
by  Danilo J. Rezende,  Shakir Mohamed
posted to  deep-learning entropy icml invertible normalizing-flows variational-bayes by  memming on 2015-06-14 17:51:43 
Abstract
 

 Visualizing and Understanding Recurrent Networks

  
(17 Nov 2015)
by  Andrej Karpathy,  Justin Johnson,  Li Fei-Fei
posted to  deep-learning rnn by  mathkann on 2015-06-10 08:48:34    along with 2 people
Abstract
 

 A Critical Review of Recurrent Neural Networks for Sequence Learning

  
(29 Jun 2015)
by  Zachary C. Lipton
posted to  deep-learning rnn by  mathkann on 2015-06-03 07:28:02    along with 3 people
Abstract
 

 Blocks and Fuel: Frameworks for deep learning

  
(1 Jun 2015)
by  Bart van Merriënboer,  Dzmitry Bahdanau,  Vincent Dumoulin,  et al.
posted to  deep-learning frameworks python by  mathkann on 2015-06-02 06:21:36 
Abstract
 

Deep AutoRegressive Networks

  
In Proceedings of the 31st International Conference on Machine Learning (ICML-14) (2014), pp. 1242-1250
by  Karol Gregor,  Ivo Danihelka,  Andriy Mnih,  Charles Blundell,  Daan Wierstra
edited by  Tony Jebara,  Eric P. Xing
posted to  autoregressive deep-learning time-series by  memming on 2015-05-29 23:35:44 
Abstract
 

 Building high-level features using large scale unsupervised learning

  
In In International Conference on Machine Learning, 2012. 103
by  Quoc V. Le,  Rajat Monga,  Matthieu Devin,  et al.
posted to  deep-learning neural-networks by  vankov on 2015-05-25 08:47:23 
Abstract
 

 Reducing the dimensionality of data with neural networks.

  
Science (New York, N.Y.), Vol. 313, No. 5786. (28 July 2006), pp. 504-507,  doi:10.1126/science.1127647
by  G. E. Hinton,  R. R. Salakhutdinov
posted to  deep-learning machine-learning print by  falex  on 2015-05-12 10:18:44    along with 50 people and 10 groups
Abstract
 

 Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification

  
(6 Feb 2015)
by  Kaiming He,  Xiangyu Zhang,  Shaoqing Ren,  Jian Sun
posted to  deep-learning by  mathkann  on 2015-05-06 05:03:15    along with 3 people and 1 group
Abstract
 

 Low precision storage for deep learning

  
(3 Apr 2015)
by  Matthieu Courbariaux,  Yoshua Bengio,  Jean-Pierre David
posted to  deep-learning by  mathkann on 2015-04-29 19:36:28    along with 1 person
Abstract
 

 Deep Neural Nets as a Method for Quantitative Structure–Activity Relationships

  
J. Chem. Inf. Model., Vol. 55, No. 2. (23 February 2015), pp. 263-274,  doi:10.1021/ci500747n
by  Junshui Ma,  Robert P. Sheridan,  Andy Liaw,  George E. Dahl,  Vladimir Svetnik
posted to  deep-learning by  babakap on 2015-04-16 20:09:14 
Abstract
 

Theano: a CPU and GPU Math Expression Compiler

  
In Proceedings of the Python for Scientific Computing Conference ({SciPy}) (June 2010)
by  James Bergstra,  Olivier Breuleux,  Frédéric Bastien,  et al.
posted to  deep-learning gpu-computing machine-learning theano by  chadwcarlson on 2015-04-14 15:28:58    along with 1 person
Abstract
 

 Theano: new features and speed improvements

  
(23 Nov 2012)
by  Frédéric Bastien,  Pascal Lamblin,  Razvan Pascanu,  et al.
posted to  deep-learning machine-learning psychophysics theano by  chadwcarlson on 2015-04-14 15:27:34    along with 3 people
Abstract
 

 Generative models for discovering sparse distributed representations

  
Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, Vol. 352, No. 1358. (29 August 1997), pp. 1177-1190,  doi:10.1098/rstb.1997.0101
by  Geoffrey E. Hinton,  Zoubin Ghahramani
posted to  deep-learning by  chadwcarlson on 2015-04-12 12:04:19    along with 4 people
Abstract
 

 On the Computational Efficiency of Training Neural Networks

  
(28 Oct 2014)
by  Roi Livni,  Shai Shalev-Shwartz,  Ohad Shamir
posted to  deep-learning by  chadwcarlson on 2015-04-12 12:03:36    along with 3 people
Abstract
 

 Reweighted Wake-Sleep

  
(11 Jun 2014)
by  Jörg Bornschein,  Yoshua Bengio
posted to  deep-learning by  chadwcarlson on 2015-04-12 12:03:07    along with 1 person
Abstract
 

 Learning Stochastic Recurrent Networks

  
(5 Mar 2015)
by  Justin Bayer,  Christian Osendorfer
posted to  deep-learning by  chadwcarlson on 2015-04-12 11:47:42    along with 3 people
Abstract
 

 Towards Biologically Plausible Deep Learning

  
(14 Feb 2015)
by  Yoshua Bengio,  Dong-Hyun Lee,  Jorg Bornschein,  Zhouhan Lin
posted to  deep-learning by  chadwcarlson on 2015-04-12 11:47:15    along with 2 people
Abstract
 

 2006: Celebrating 75 years of AI - History and Outlook: the Next 25 Years

  
(31 Aug 2007)
by  Juergen Schmidhuber
posted to  agi deep-learning by  chadwcarlson  on 2015-04-12 11:17:52    along with 5 people and 1 group
Abstract
 

 Simple Algorithmic Principles of Discovery, Subjective Beauty, Selective Attention, Curiosity & Creativity

  
(5 Sep 2007)
by  Juergen Schmidhuber
posted to  deep-learning machine-learning by  chadwcarlson  on 2015-04-12 11:17:21    along with 5 people and 2 groups
Abstract
 

 Coherence Progress: A Measure of Interestingness Based on Fixed Compressors Artificial General Intelligence

  
Vol. 6830 (2011), pp. 21-30,  doi:10.1007/978-3-642-22887-2_3
by  Tom Schaul,  Leo Pape,  Tobias Glasmachers,  et al.
edited by  Jürgen Schmidhuber,  Kristinn Thórisson,  Moshe Looks,  Jürgen Schmidhuber,  Kristinn R. Thórisson,  Moshe Looks
posted to  agi deep-learning by  chadwcarlson on 2015-04-12 11:15:40    along with 1 person
Abstract
 

 Visualizing and Understanding Convolutional Networks

  
(28 Nov 2013)
by  Matthew D. Zeiler,  Rob Fergus
posted to  convolutional-nn deep-learning machine-learning visualization by  chadwcarlson to the group  Machine Perception & Cognitive Robotics at FAU on 2015-04-12 11:04:29  along with 7 people and 1 group
Abstract
 

 Greedy layer-wise training of deep networks

  
In In NIPS (2007)
by  Yoshua Bengio,  Pascal Lamblin,  Dan Popovici,  Hugo Larochelle,  Université De Montréal,  Montréal Québec
posted to  deep-learning dnn learning neural-networks by  chadwcarlson to the group  Machine Perception & Cognitive Robotics at FAU on 2015-04-12 11:01:54    along with 10 people
Abstract
 

 Why Does Unsupervised Pre-training Help Deep Learning?

  
Journal of Machine Learning Research
by  Dumitru Erhan,  Yoshua Bengio,  Aaron Courville,  Pierre-Antoine Manzagol,  Pascal Vincent,  Samy Bengio
posted to  deep-learning by  chadwcarlson to the group  Machine Perception & Cognitive Robotics at FAU on 2015-04-12 11:00:53    along with 9 people and 1 group
Abstract
 

 Deep learning from temporal coherence in video

  
In Proceedings of the 26th Annual International Conference on Machine Learning (2009), pp. 737-744,  doi:10.1145/1553374.1553469
by  Hossein Mobahi,  Ronan Collobert,  Jason Weston
posted to  deep-learning motion by  chadwcarlson to the group  Machine Perception & Cognitive Robotics at FAU on 2015-04-12 10:59:35    along with 5 people
Abstract
 

 A Simple Way to Initialize Recurrent Networks of Rectified Linear Units

  
(7 Apr 2015)
by  Quoc V. Le,  Navdeep Jaitly,  Geoffrey E. Hinton
posted to  deep-learning nonlinear-systems rectified-linear recurrent-neural-network by  memming on 2015-04-09 02:29:47    along with 1 person
Abstract
 

 RNA splicing. The human splicing code reveals new insights into the genetic determinants of disease.

  
Science (New York, N.Y.), Vol. 347, No. 6218. (9 January 2015), 1254806,  doi:10.1126/science.1254806
by  Hui Y. Xiong,  Babak Alipanahi,  Leo J. Lee,  et al.
posted to  alternative-splicing deep-learning eqtl machine-learning quantitative-trait by  pickw  on 2015-04-08 03:47:39    along with 22 people and 3 groups
Abstract
 

 Computational intelligence techniques in bioinformatics.

  
Computational biology and chemistry, Vol. 47 (December 2013), pp. 37-47
by  Aboul Ella E. Hassanien,  Eiman Tamah T. Al-Shammari,  Neveen I. Ghali
posted to  ai bioinf deep-learning fuzzy ml by  guhjy on 2015-03-28 04:49:38 
Abstract










Tag deep-learning [159 articles] 

Recent papers classified by the tag deep-learning.
Search   Copy  Export   Sort  Hide Details
 

 Exact solutions to the nonlinear dynamics of learning in deep linear neural networks

  
(19 Feb 2014)
by  Andrew M. Saxe,  James L. McClelland,  Surya Ganguli
posted to  deep-learning dynamical-system machine-learning optimization by  memming on 2015-03-22 21:30:05 
Abstract
 

 DRAW: A Recurrent Neural Network For Image Generation

  
(20 May 2015)
by  Karol Gregor,  Ivo Danihelka,  Alex Graves,  Danilo J. Rezende,  Daan Wierstra
posted to  deep-learning by  mathkann on 2015-03-21 04:25:29    along with 4 people
Abstract
 

 An exact mapping between the Variational Renormalization Group and Deep Learning

  
(14 Oct 2014)
by  Pankaj Mehta,  David J. Schwab
posted to  deep-learning machine-learning physics renormalization-group by  memming on 2015-03-20 18:27:55    along with 3 people
Abstract
 

 Complexity of random smooth functions on the high-dimensional sphere

  
The Annals of Probability, Vol. 41, No. 6. (16 Dec 2013), pp. 4214-4247,  doi:10.1214/13-aop862
by  Antonio Auffinger,  Gerard B. Arous
posted to  deep-learning high-dimension machine-learning statistics by  memming on 2015-03-20 16:17:30 
Abstract
 

Hierarchical Modular Optimization of Convolutional Networks Achieves Representations Similar to Macaque IT and Human Ventral Stream

  
In Advances in Neural Information Processing Systems 26 (2013), pp. 3093-3101
by  Daniel L. Yamins,  Ha Hong,  Charles Cadieu,  James J. DiCarlo
edited by  C. J. C. Burges,  L. Bottou,  M. Welling,  Z. Ghahramani,  K. Q. Weinberger
posted to  convolutional-neural-network deep-learning by  memming on 2015-03-10 20:15:21    along with 1 person
 

Making a Science of Model Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures

  
In Proceedings of the 30th International Conference on Machine Learning, {ICML} 2013, Atlanta, GA, USA, 16-21 June 2013 (2013), pp. 115-123
by  James Bergstra,  Daniel Yamins,  David D. Cox
posted to  deep-learning optimization by  memming on 2015-03-10 20:04:49 
 

 Using transcriptomics to guide lead optimization in drug discovery projects: Lessons learned from the QSTAR project

  
Drug Discovery Today, Vol. 20, No. 5. (May 2015), pp. 505-513,  doi:10.1016/j.drudis.2014.12.014
by  Bie Verbist,  Günter Klambauer,  Liesbet Vervoort,  et al.
posted to  deep-learning drug-discovery by  mathkann  on 2015-02-20 14:56:42    along with 2 people
Abstract
 

 Random Walks on Context Spaces: Towards an Explanation of the Mysteries of Semantic Word Embeddings

  
(12 Feb 2015)
by  Sanjeev Arora,  Yuanzhi Li,  Yingyu Liang,  Tengyu Ma,  Andrej Risteski
posted to  deep-learning nlp by  mathkann on 2015-02-18 10:03:29 
Abstract
 

 Multi-view Face Detection Using Deep Convolutional Neural Networks

  
(10 Feb 2015)
by  Sachin S. Farfade,  Mohammad Saberian,  Li-Jia Li
posted to  deep-learning by  mathkann on 2015-02-17 14:55:40    along with 1 person
Abstract
 

 Large-Scale Deep Learning on the YFCC100M Dataset

  
(11 Feb 2015)
by  Karl Ni,  Roger Pearce,  Kofi Boakye,  et al.
posted to  deep-learning gpu hpc by  mathkann on 2015-02-14 03:05:06 
Abstract
 

 Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images

  
(2 Apr 2015)
by  Anh Nguyen,  Jason Yosinski,  Jeff Clune
posted to  convolutional-model deep-learning image-classification by  memming  on 2015-01-28 17:05:44    along with 5 people and 1 group
Abstract
 

 Modeling Temporal Dependencies in High-Dimensional Sequences: Application to Polyphonic Music Generation and Transcription

  
(27 Jun 2012)
by  Nicolas Boulanger-Lewandowski,  Yoshua Bengio,  Pascal Vincent
posted to  deep-learning discrete latent-dynamics music by  memming on 2015-01-08 21:41:48    along with 2 people
Abstract
 

 How to Construct Deep Recurrent Neural Networks

  
(24 Apr 2014)
by  Razvan Pascanu,  Caglar Gulcehre,  Kyunghyun Cho,  Yoshua Bengio
posted to  deep-learning recurrent-neural-networks by  raulsierra on 2014-12-17 00:36:36    along with 1 person
Abstract
 

 A Fast Learning Algorithm for Deep Belief Nets

  
Neural Computation, Vol. 18, No. 7. (17 May 2006), pp. 1527-1554,  doi:10.1162/neco.2006.18.7.1527
by  Geoffrey E. Hinton,  Simon Osindero,  Yee-Whye Teh
posted to  deep-learning feature-learning by  raulsierra on 2014-12-17 00:34:16    along with 29 people
Abstract
 

Doubly Stochastic Variational Bayes for non-Conjugate Inference

  
In Proceedings of the 31st International Conference on Machine Learning (ICML-14) (2014), pp. 1971-1979
by  Michalis Titsias,  Miguel Lázaro-gredilla
edited by  Tony Jebara,  Eric P. Xing
posted to  deep-learning machine-learning variational-bayes by  memming on 2014-12-13 17:12:17    along with 1 person
Abstract
 

 Convolutional Networks Can Learn to Generate Affinity Graphs for Image Segmentation

  
Neural Computation, Vol. 22, No. 2. (18 November 2009), pp. 511-538,  doi:10.1162/neco.2009.10-08-881
by  Srinivas C. Turaga,  Joseph F. Murray,  Viren Jain,  et al.
posted to  deep-learning hyperspectral-images image-segmentation by  raulsierra on 2014-12-02 16:04:14    along with 4 people
Abstract
 

 Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion

  
J. Mach. Learn. Res., Vol. 11 (December 2010), pp. 3371-3408
by  Pascal Vincent,  Hugo Larochelle,  Isabelle Lajoie,  Yoshua Bengio,  Pierre A. Manzagol
posted to  autoencoder deep-learning machine-learning manifold-learning unsupervised-learning by  memming on 2014-11-10 15:13:25 
Abstract
 

 Extracting and Composing Robust Features with Denoising Autoencoders

  
In Proceedings of the 25th International Conference on Machine Learning (2008), pp. 1096-1103,  doi:10.1145/1390156.1390294
by  Pascal Vincent,  Hugo Larochelle,  Yoshua Bengio,  Pierre A. Manzagol
posted to  auto-encoder deep-learning icml manifold-learning robust by  memming  on 2014-10-27 22:38:26    along with 7 people
Abstract
 

 Emergence of a 'visual number sense' in hierarchical generative models

  
Nat Neurosci, Vol. 15, No. 2. (8 February 2012), pp. 194-196,  doi:10.1038/nn.2996
by  Ivilin Stoianov,  Marco Zorzi
posted to  deep-learning numerosity perception by  memming  on 2014-10-22 22:24:22    along with 3 people
 

Deep learning via Hessian-free optimization

  
In Proceedings of the 27th International Conference on Machine Learning (ICML-10) (June 2010), pp. 735-742
by  James Martens
edited by  Johannes Fürnkranz,  Thorsten Joachims
posted to  deep-learning hessian newton-method optimization by  memming on 2014-10-19 00:44:24 
 

Generalized Denoising Auto-Encoders as Generative Models

  
In Advances in Neural Information Processing Systems 26 (2013), pp. 899-907
by  Yoshua Bengio,  Li Yao,  Guillaume Alain,  Pascal Vincent
edited by  C. J. C. Burges,  L. Bottou,  M. Welling,  Z. Ghahramani,  K. Q. Weinberger
posted to  auto-encoder deep-learning machine-learning robust by  memming on 2014-10-19 00:23:18 
 

 Identifying and attacking the saddle point problem in high-dimensional non-convex optimization

  
(10 Jun 2014)
by  Yann Dauphin,  Razvan Pascanu,  Caglar Gulcehre,  Kyunghyun Cho,  Surya Ganguli,  Yoshua Bengio
posted to  deep-learning machine-learning newton-method optimization by  memming on 2014-10-19 00:01:22    along with 4 people
Abstract
 

 Stochastic Backpropagation and Approximate Inference in Deep Generative Models

  
In International Conference on Machine Learning (30 May 2014)
by  Danilo J. Rezende,  Shakir Mohamed,  Daan Wierstra
posted to  deep-learning machine-learning stochastic-gradient-descent-algorithm tricks variational-bayes by  memming on 2014-10-12 22:12:06    along with 3 people
Abstract
 

Deep boltzmann machines

  
In International Conference on Artificial Intelligence and Statistics (2009), pp. 448-455
by  Ruslan Salakhutdinov,  Geoffrey E. Hinton
posted to  botlzmann-machine deep-learning graph network neural-network statistica-learning by  lehalle on 2014-09-26 09:32:43 
 

 TBCNN: A Tree-Based Convolutional Neural Network for Programming Language Processing

  
(18 Sep 2014)
by  Lili Mou,  Ge Li,  Zhi Jin,  Lu Zhang,  Tao Wang
posted to  deep-learning neural-networks program-analysis program-comprehension by  klerisson to the group  LASCAM on 2014-09-22 14:42:05 
Abstract
 

 Building Program Vector Representations for Deep Learning

  
(11 Sep 2014)
by  Lili Mou,  Ge Li,  Yuxuan Liu,  et al.
posted to  classifier-learning deep-learning program-analysis program-comprehension by  klerisson to the group  LASCAM on 2014-09-17 15:37:16 
Abstract
 

 Unsupervised Feature Learning and Deep Learning: A Review and New Perspectives

  
(24 Jun 2012)
by  Yoshua Bengio,  Aaron Courville,  Pascal Vincent
posted to  deep-learning feature learning unsupervised by  daltonwhyte on 2014-09-04 21:05:39    along with 1 person
Abstract
 

 Efficient Estimation of Word Representations in Vector Space

  
(7 Sep 2013)
by  Tomas Mikolov,  Kai Chen,  Greg Corrado,  Jeffrey Dean
posted to  ann bow deep-learning lm ngram skipgram by  lamafan  on 2014-09-02 18:03:08  /   along with 7 people
Abstract
 

 How Auto-Encoders Could Provide Credit Assignment in Deep Networks via Target Propagation

  
(29 Jul 2014)
by  Yoshua Bengio
posted to  artificial-neural-network auto-encoder deep-learning machine-learning by  memming on 2014-08-14 21:16:42 
Abstract
 

 Improving neural networks by preventing co-adaptation of feature detectors

  
(3 Jul 2012)
by  Geoffrey E. Hinton,  Nitish Srivastava,  Alex Krizhevsky,  Ilya Sutskever,  Ruslan R. Salakhutdinov
posted to  artificial-neural-network deep-learning machine-learning neural-network statistical-learning by  lehalle on 2014-07-21 16:29:40  /   along with 9 people
Abstract
 

Large scale online learning

  
Advances in neural information processing systems, Vol. 16 (2004)
by  Leon B. Le Cun,  L. Bottou
posted to  convergence deep-learning machine-learning perceptron by  lehalle on 2014-07-13 18:22:07 
 

Deep learning made easier by linear transformations in perceptrons

  
In International Conference on Artificial Intelligence and Statistics (2012), pp. 924-932
by  Tapani Raiko,  Harri Valpola,  Yann LeCun
posted to  deep-learning machine-learning perceptron by  lehalle on 2014-07-13 18:19:46 
 

 Event-driven contrastive divergence for spiking neuromorphic systems

  
Frontiers in Neuroscience, Vol. 7 (2014),  doi:10.3389/fnins.2013.00272
by  Emre Neftci,  Srinjoy Das,  Bruno Pedroni,  Kenneth Kreutz-Delgado,  Gert Cauwenberghs
posted to  deep-learning neuromorphic-engineering sampling-hypothesis stdp by  memming on 2014-02-03 21:46:46 
 

 Two Distributed-State Models For Generating High-Dimensional Time Series

  
J. Mach. Learn. Res., Vol. 12 (July 2011), pp. 1025-1068
by  Graham W. Taylor,  Geoffrey E. Hinton,  Sam T. Roweis
posted to  deep-learning restricted-boltzmann-machine time-series by  memming on 2014-01-28 17:17:38 
Abstract
 

 Factored Conditional Restricted Boltzmann Machines for Modeling Motion Style

  
In Proceedings of the 26th Annual International Conference on Machine Learning (2009), pp. 1025-1032,  doi:10.1145/1553374.1553505
by  Graham W. Taylor,  Geoffrey E. Hinton
posted to  deep-learning dynamical-system time-series by  memming on 2014-01-28 17:09:04    along with 3 people
Abstract
 

 Automated processing and identification of benthic invertebrate samples

  
Journal of the North American Benthological Society, Vol. 29, No. 3. (8 June 2010), pp. 867-874,  doi:10.1899/09-080.1
by  David A. Lytle,  Gonzalo Martínez-Muñoz,  Wei Zhang,  et al.
posted to  deep-learning ecoinformatics feature-learning machine-learning by  raulsierra on 2014-01-17 16:29:43 
Abstract
 

Rectified linear units improve restricted boltzmann machines

  
In Proceedings of the 27th International Conference on Machine Learning (ICML-10) (2010), pp. 807-814
by  Vinod Nair,  Geoffrey E. Hinton
posted to  deep-learning machine-learning neural-network statistical-learning by  lehalle on 2013-11-04 11:19:16 
 

Improving Deep Neural Networks for LVCSR using Rectified Linear Units and Dropout

  
In Proc. ICASSP (2013)
by  George E. Dahl,  Tara N. Sainath,  Geoffrey E. Hinton
posted to  deep-learning machine-learning neural-network statistical-learning by  lehalle on 2013-11-04 11:18:24 
 

Deep learning via Hessian-free optimization

  
In Proceedings of the 27th International Conference on Machine Learning (ICML-10) (2010), pp. 735-742
by  James Martens
posted to  deep-learning machine-learning neural-network statistical-learning by  lehalle on 2013-11-04 11:17:21 
 

 Why Does Unsupervised Pre-training Help Deep Learning?

  
J. Mach. Learn. Res., Vol. 11 (March 2010), pp. 625-660
by  Dumitru Erhan,  Yoshua Bengio,  Aaron Courville,  Pierre A. Manzagol,  Pascal Vincent,  Samy Bengio
posted to  deep-learning machine-learning neural-network statistical-learning by  lehalle on 2013-11-04 11:16:28    along with 3 people
Abstract
 

Greedy layer-wise training of deep networks

  
Advances in neural information processing systems, Vol. 19 (2007)
by  Yoshua Bengio,  Pascal Lamblin,  Dan Popovici,  Hugo Larochelle
posted to  deep-learning machine-learning neural-network statistical-learning by  lehalle on 2013-11-04 11:13:36 
 

 Representation Learning: A Review and New Perspectives

  
Pattern Analysis and Machine Intelligence, IEEE Transactions on, Vol. 35, No. 8. (August 2013), pp. 1798-1828,  doi:10.1109/tpami.2013.50
by  Yoshua Bengio,  Aaron C. Courville,  Pascal Vincent
posted to  deep-learning machine-learning review todo by  falex  on 2013-08-17 18:43:26    along with 4 people and 1 group
Abstract
 

 To Recognize Shapes, First Learn to Generate Images

  
Progress in Brain Research, Vol. 165 (2007), pp. 535-547,  doi:10.1016/s0079-6123(06)65034-6
by  Geoffrey E. Hinton
posted to  deep-learning by  tatome on 2013-08-15 01:58:43    along with 3 people
Abstract
 

 Feature learning and deep architectures: new directions for music informatics

  
In Journal of Intelligent Information Systems, Vol. 41, No. 3. (2013), pp. 461-481,  doi:10.1007/s10844-013-0248-5
by  EricJ Humphrey,  JuanP Bello,  Yann LeCun
posted to  deep-learning by  craffel on 2013-07-16 18:03:49    along with 3 people
Abstract
 

 Learning New Facts From Knowledge Bases With Neural Tensor Networks and Semantic Word Vectors

  
(16 Mar 2013)
by  Danqi Chen,  Richard Socher,  Christopher D. Manning,  Andrew Y. Ng
posted to  deep-learning by  pengli09 on 2013-05-07 13:18:12 
Abstract
 

 Bayesian models: the structure of the world, uncertainty, behavior, and the brain: Bayesian models and the world

  
Annals of the New York Academy of Sciences, Vol. 1224, No. 1. (April 2011), pp. 22-39,  doi:10.1111/j.1749-6632.2011.05965.x
by  Iris Vilares,  Konrad Kording
posted to  bayesian brain deep-learning information-theory model statistics by  garyfeng to the group  ReadingLab on 2013-04-10 02:36:23    along with 5 people
Abstract
 

 Building high-level features using large scale unsupervised learning

  
(12 Jul 2012)
by  Quoc V. Le,  Marc'Aurelio Ranzato,  Rajat Monga,  et al.
posted to  computer_vision deep-learning feature-detection image_recognition machine-learning unsupervised-learning by  tomhebbron on 2013-03-12 01:06:30    along with 11 people
Abstract
 

 Representation Learning: A Review and New Perspectives

  
(23 Apr 2014)
by  Yoshua Bengio,  Aaron Courville,  Pascal Vincent
posted to  deep-learning machine-learning review by  tomhebbron  on 2013-03-11 19:36:25    along with 13 people and 1 group
Abstract
 

Large Scale Distributed Deep Networks

  
In Advances in Neural Information Processing Systems 25 (2012)
by  Jeffrey Dea,  Greg S. Corrado,  Rajat Monga,  et al.
posted to  2012 bfgs deep-learning deeplearning google l-nfgs lbfgs nips sgd by  myui on 2012-12-07 06:10:41    along with 2 people
 

 Falsificationism and Statistical Learning Theory: Comparing the Popper and Vapnik-Chervonenkis Dimensions

  
Journal for General Philosophy of Science, Vol. 40, No. 1. (20 August 2009), pp. 51-58,  doi:10.1007/s10838-009-9091-3
by  David Corfield,  Bernhard Schölkopf,  Vladimir Vapnik
posted to  deep-learning machine-learning philosophy-of-science statistics by  tomhebbron on 2012-11-04 00:18:40    along with 1 person
Abstract




Modeling Deep Temporal Dependencies with Recurrent Grammar Cells""

  
In Advances in Neural Information Processing Systems 27 (2014), pp. 1925-1933
by  Vincent Michalski,  Roland Memisevic,  Kishore Konda
edited by  Z. Ghahramani,  M. Welling,  C. Cortes,  N. D. Lawrence,  K. Q. Weinberger
posted to  autoencoder deep-learning lstm machine-learning nips recurrent-neural-network time-series video by  memming on 2015-12-16 15:20:43 
 

 Unsupervised Learning of Video Representations using LSTMs

  
(31 Mar 2015)
by  Nitish Srivastava,  Elman Mansimov,  Ruslan Salakhutdinov
posted to  autoencoder deep-learning icml lstm machine-learning time-series video by  memming on 2015-12-16 15:13:54    along with 4 people
Abstract
 

 Better Computer Go Player with Neural Network and Long-term Prediction

  
(26 Jan 2016)
by  Yuandong Tian,  Yan Zhu
posted to  deep-learning games go by  lehalle on 2015-12-09 17:57:52    along with 2 people
Abstract
 

 Fully Convolutional Networks for Semantic Segmentation

  
(8 Mar 2015)
by  Jonathan Long,  Evan Shelhamer,  Trevor Darrell
posted to  deep-learning by  hans_meine on 2015-12-04 19:12:45    along with 2 people
Abstract Notes
 

 Gradient Estimation Using Stochastic Computation Graphs

  
(13 Nov 2015)
by  John Schulman,  Nicolas Heess,  Theophane Weber,  Pieter Abbeel
posted to  deep-learning deep-mind machine-learning tool by  memming on 2015-12-04 15:27:11 
Abstract
 

 Deep Temporal Sigmoid Belief Networks for Sequence Modeling

  
(23 Sep 2015)
by  Zhe Gan,  Chunyuan Li,  Ricardo Henao,  David Carlson,  Lawrence Carin
posted to  deep-learning hmm latent-dynamics time-series variational-bayes by  memming on 2015-11-30 17:58:47 
Abstract
 

 Embed to Control: A Locally Linear Latent Dynamics Model for Control from Raw Images

  
(20 Nov 2015)
by  Manuel Watter,  Jost T. Springenberg,  Joschka Boedecker,  Martin Riedmiller
posted to  deep-learning latent-dynamics linear-dynamical-system nonlinear-systems optimal-control by  memming on 2015-11-30 17:40:21    along with 1 person
Abstract
 

 Variational Gaussian Process

  
(20 Nov 2015)
by  Dustin Tran,  Rajesh Ranganath,  David M. Blei
posted to  deep-learning gaussian-process latent-variable nonlinear variational-bayes by  memming on 2015-11-26 16:28:08    along with 1 person
Abstract
 

 SparkNet: Training Deep Networks in Spark

  
(26 Nov 2015)
by  Philipp Moritz,  Robert Nishihara,  Ion Stoica,  Michael I. Jordan
posted to  deep-learning machine-learning software spark by  mathkann on 2015-11-23 17:51:30    along with 3 people
Abstract
 

 Deep Kalman Filters

  
(16 Nov 2015)
by  Rahul G. Krishnan,  Uri Shalit,  David Sontag
posted to  deep-learning kalman-filter stochastic-gradient-descent-algorithm by  memming on 2015-11-18 21:41:24 
Abstract
 

 Sequence to Sequence Learning with Neural Networks

  
(14 Dec 2014)
by  Ilya Sutskever,  Oriol Vinyals,  Quoc V. Le
posted to  deep-learning nlp by  mathkann on 2015-11-04 06:49:05    along with 4 people
Abstract
 

 Privacy-Preserving Deep Learning

  
In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security (October 2015), pp. 1310-1321,  doi:10.1145/2810103.2813687
by  Reza Shokri,  Vitaly Shmatikov
posted to  deep-learning for:yuchenzhao machine-learning neural-networks privacy by  tnhh on 2015-10-15 06:58:13 
Abstract
 

 Predicting effects of noncoding variants with deep learning–based sequence model

  
Nature Methods, Vol. 12, No. 10. (24 August 2015), pp. 931-934,  doi:10.1038/nmeth.3547
by  Jian Zhou,  Olga G. Troyanskaya
posted to  deep-learning functional-annotation non-coding by  pickw  on 2015-10-14 19:08:24    along with 8 people and 1 group
 

 Curriculum Learning

  
In Proceedings of the 26th Annual International Conference on Machine Learning (2009), pp. 41-48,  doi:10.1145/1553374.1553380
by  Yoshua Bengio,  Jérôme Louradour,  Ronan Collobert,  Jason Weston
posted to  curriculum-learning deep-learning machine-learning by  memming on 2015-10-07 14:30:12    along with 2 people
Abstract
 

 High-order neural networks and kernel methods for peptide-MHC binding prediction

  
Bioinformatics, Vol. 31, No. 22. (15 November 2015), pp. 3600-3607,  doi:10.1093/bioinformatics/btv371
by  Pavel P. Kuksa,  Martin R. Min,  Rishabh Dugar,  Mark Gerstein
posted to  deep-learning interaction machine-learning protein-protein by  ajs625  on 2015-09-22 05:37:13    along with 1 person and 1 group
Abstract
 

 Deep Broad Learning - Big Models for Big Data

  
(4 Sep 2015)
by  Nayyar A. Zaidi,  Geoffrey I. Webb,  Mark J. Carman,  Francois Petitjean
posted to  bias broad-learning deep-learning machine-learning by  ajs625 on 2015-09-14 04:12:09 
Abstract
 

 Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning.

  
Nature biotechnology, Vol. 33, No. 8. (August 2015), pp. 831-838
by  Babak Alipanahi,  Andrew Delong,  Matthew T. Weirauch,  Brendan J. Frey
posted to  deep-learning dna-protein interaction machine-learning rna-protein by  ajs625 on 2015-09-12 22:53:03    along with 1 person
Abstract
 

 A Neural Algorithm of Artistic Style

  
(2 Sep 2015)
by  Leon A. Gatys,  Alexander S. Ecker,  Matthias Bethge
posted to  computer-vision deep-learning to-code visualization by  mathkann on 2015-09-01 09:39:59    along with 5 people
Abstract
 

 Quantum Deep Learning

  
(22 May 2015)
by  Nathan Wiebe,  Ashish Kapoor,  Krysta M. Svore
posted to  ai deep-learning quantum-computing by  mathkann on 2015-08-16 19:42:45    along with 2 people
Abstract
 

 Deep Learning for Single-View Instance Recognition

  
(29 Jul 2015)
by  David Held,  Sebastian Thrun,  Silvio Savarese
posted to  deep-learning by  noud88 on 2015-07-31 13:49:47 
Abstract
 

 Training Very Deep Networks

  
(22 Jul 2015)
by  Rupesh K. Srivastava,  Klaus Greff,  Jürgen Schmidhuber
posted to  deep-learning by  mathkann on 2015-07-23 09:30:53 
Abstract
 

 Unsupervised Learning on Neural Network Outputs

  
(7 Jul 2015)
by  Yao Lu
posted to  deep-learning by  mathkann on 2015-07-08 14:23:44 
Abstract
 

 Solving Verbal Comprehension Questions in IQ Test by Knowledge-Powered Word Embedding

  
(29 May 2015)
by  Huazheng Wang,  Bin Gao,  Jiang Bian,  Fei Tian,  Tie-Yan Liu
posted to  deep-learning by  hukkinen on 2015-06-16 16:12:14 
Abstract
 

 Variational Inference with Normalizing Flows

  
In Proceedings of The 32nd International Conference on Machine Learning (26 May 2015), pp. 1530-1538
by  Danilo J. Rezende,  Shakir Mohamed
posted to  deep-learning entropy icml invertible normalizing-flows variational-bayes by  memming on 2015-06-14 17:51:43 
Abstract
 

 Visualizing and Understanding Recurrent Networks

  
(17 Nov 2015)
by  Andrej Karpathy,  Justin Johnson,  Li Fei-Fei
posted to  deep-learning rnn by  mathkann on 2015-06-10 08:48:34    along with 2 people
Abstract
 

 A Critical Review of Recurrent Neural Networks for Sequence Learning

  
(29 Jun 2015)
by  Zachary C. Lipton
posted to  deep-learning rnn by  mathkann on 2015-06-03 07:28:02    along with 3 people

你可能感兴趣的:(Deep,Learning,deep-learning,深度学习,论文)