mmdetection开源代码链接:
配置文件:
config每个配置文件里有一个metafile.yml的配置文件,给了一个系列(colletions)下的不同实现(不同backbone,neck等),以及相应的权重链接。
每一个model的config可以分为如下几块:
model:说明model结构backbone\neck\head 及其参数(loss是在head里配置的),get targets(由标注值生成feature)和decode(由feature生成目标形式)都是在head里以方法的形式直接定义的。在loss方法中调用get_targets。
schedule:说明optimizer和learning policy
dataset:train_pipeline和test_pipeline,即train和test时的transform
mmdet/models
在模型层级上,detectors是Architecture,给出了检测的框架。检测框架的基类为BaseDetector,定义了接口,包括框架的forward接口(包括forward_train和forward_test两个逻辑)、一些属性(是否包含neck结构、是否在ROI head中是否包含shared head,是否包含mask等)、extract_feats接口、show_result方法等。
class BaseDetector(BaseModule, metaclass=ABCMeta):
"""Base class for detectors."""
@auto_fp16(apply_to=('img', ))
def forward(self, img, img_metas, return_loss=True, **kwargs):
"""Calls either :func:`forward_train` or :func:`forward_test` depending
on whether ``return_loss`` is ``True``.
Note this setting will change the expected inputs. When
``return_loss=True``, img and img_meta are single-nested (i.e. Tensor
and List[dict]), and when ``resturn_loss=False``, img and img_meta
should be double nested (i.e. List[Tensor], List[List[dict]]), with
the outer list indicating test time augmentations.
"""
if torch.onnx.is_in_onnx_export():
assert len(img_metas) == 1
return self.onnx_export(img[0], img_metas[0])
if return_loss:
return self.forward_train(img, img_metas, **kwargs)
else:
return self.forward_test(img, img_metas, **kwargs)
def forward_train(self, imgs, img_metas, **kwargs):
"""
Args:
img (Tensor): of shape (N, C, H, W) encoding input images.
Typically these should be mean centered and std scaled.
img_metas (list[dict]): List of image info dict where each dict
has: 'img_shape', 'scale_factor', 'flip', and may also contain
'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'.
For details on the values of these keys, see
:class:`mmdet.datasets.pipelines.Collect`.
kwargs (keyword arguments): Specific to concrete implementation.
"""
# NOTE the batched image size information may be useful, e.g.
# in DETR, this is needed for the construction of masks, which is
# then used for the transformer_head.
batch_input_shape = tuple(imgs[0].size()[-2:])
for img_meta in img_metas:
img_meta['batch_input_shape'] = batch_input_shape
def forward_test(self, imgs, img_metas, **kwargs):
"""
Args:
imgs (List[Tensor]): the outer list indicates test-time
augmentations and inner Tensor should have a shape NxCxHxW,
which contains all images in the batch.
img_metas (List[List[dict]]): the outer list indicates test-time
augs (multiscale, flip, etc.) and the inner list indicates
images in a batch.
"""
for var, name in [(imgs, 'imgs'), (img_metas, 'img_metas')]:
if not isinstance(var, list):
raise TypeError(f'{name} must be a list, but got {type(var)}')
num_augs = len(imgs)
if num_augs != len(img_metas):
raise ValueError(f'num of augmentations ({len(imgs)}) '
f'!= num of image meta ({len(img_metas)})')
# NOTE the batched image size information may be useful, e.g.
# in DETR, this is needed for the construction of masks, which is
# then used for the transformer_head.
for img, img_meta in zip(imgs, img_metas):
batch_size = len(img_meta)
for img_id in range(batch_size):
img_meta[img_id]['batch_input_shape'] = tuple(img.size()[-2:])
if num_augs == 1:
# proposals (List[List[Tensor]]): the outer list indicates
# test-time augs (multiscale, flip, etc.) and the inner list
# indicates images in a batch.
# The Tensor should have a shape Px4, where P is the number of
# proposals.
if 'proposals' in kwargs:
kwargs['proposals'] = kwargs['proposals'][0]
return self.simple_test(imgs[0], img_metas[0], **kwargs)
else:
assert imgs[0].size(0) == 1, 'aug test does not support ' \
'inference with batch size ' \
f'{imgs[0].size(0)}'
# TODO: support test augmentation for predefined proposals
assert 'proposals' not in kwargs
return self.aug_test(imgs, img_metas, **kwargs)
在此基础上继承了SingleStageDetector(调用backbone, neck, head)和TwoStageDetector(调用backbone,neck,rpn_head, roi_head)。
其中,SingleStageDetector如下:
@DETECTORS.register_module()
class SingleStageDetector(BaseDetector):
"""Base class for single-stage detectors.
Single-stage detectors directly and densely predict bounding boxes on the
output features of the backbone+neck.
"""
def __init__(self,
backbone,
neck=None,
bbox_head=None,
train_cfg=None,
test_cfg=None,
pretrained=None,
init_cfg=None):
super(SingleStageDetector, self).__init__(init_cfg)
if pretrained:
warnings.warn('DeprecationWarning: pretrained is deprecated, '
'please use "init_cfg" instead')
backbone.pretrained = pretrained
self.backbone = build_backbone(backbone)
if neck is not None:
self.neck = build_neck(neck)
bbox_head.update(train_cfg=train_cfg)
bbox_head.update(test_cfg=test_cfg)
self.bbox_head = build_head(bbox_head)
self.train_cfg = train_cfg
self.test_cfg = test_cfg
def forward_train(self,
img,
img_metas,
gt_bboxes,
gt_labels,
gt_bboxes_ignore=None):
"""
Args:
img (Tensor): Input images of shape (N, C, H, W).
Typically these should be mean centered and std scaled.
img_metas (list[dict]): A List of image info dict where each dict
has: 'img_shape', 'scale_factor', 'flip', and may also contain
'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'.
For details on the values of these keys see
:class:`mmdet.datasets.pipelines.Collect`.
gt_bboxes (list[Tensor]): Each item are the truth boxes for each
image in [tl_x, tl_y, br_x, br_y] format.
gt_labels (list[Tensor]): Class indices corresponding to each box
gt_bboxes_ignore (None | list[Tensor]): Specify which bounding
boxes can be ignored when computing the loss.
Returns:
dict[str, Tensor]: A dictionary of loss components.
"""
super(SingleStageDetector, self).forward_train(img, img_metas)
x = self.extract_feat(img)
losses = self.bbox_head.forward_train(x, img_metas, gt_bboxes,
gt_labels, gt_bboxes_ignore)
return losses
def simple_test(self, img, img_metas, rescale=False):
"""Test function without test-time augmentation.
Args:
img (torch.Tensor): Images with shape (N, C, H, W).
img_metas (list[dict]): List of image information.
rescale (bool, optional): Whether to rescale the results.
Defaults to False.
Returns:
list[list[np.ndarray]]: BBox results of each image and classes.
The outer list corresponds to each image. The inner list
corresponds to each class.
"""
feat = self.extract_feat(img)
results_list = self.bbox_head.simple_test(
feat, img_metas, rescale=rescale)
bbox_results = [
bbox2result(det_bboxes, det_labels, self.bbox_head.num_classes)
for det_bboxes, det_labels in results_list
]
return bbox_results
TwoStageDetector如下:
@DETECTORS.register_module()
class TwoStageDetector(BaseDetector):
"""Base class for two-stage detectors.
Two-stage detectors typically consisting of a region proposal network and a
task-specific regression head.
"""
def __init__(self,
backbone,
neck=None,
rpn_head=None,
roi_head=None,
train_cfg=None,
test_cfg=None,
pretrained=None,
init_cfg=None):
super(TwoStageDetector, self).__init__(init_cfg)
if pretrained:
warnings.warn('DeprecationWarning: pretrained is deprecated, '
'please use "init_cfg" instead')
backbone.pretrained = pretrained
self.backbone = build_backbone(backbone)
if neck is not None:
self.neck = build_neck(neck)
if rpn_head is not None:
rpn_train_cfg = train_cfg.rpn if train_cfg is not None else None
rpn_head_ = rpn_head.copy()
rpn_head_.update(train_cfg=rpn_train_cfg, test_cfg=test_cfg.rpn)
self.rpn_head = build_head(rpn_head_)
if roi_head is not None:
# update train and test cfg here for now
# TODO: refactor assigner & sampler
rcnn_train_cfg = train_cfg.rcnn if train_cfg is not None else None
roi_head.update(train_cfg=rcnn_train_cfg)
roi_head.update(test_cfg=test_cfg.rcnn)
roi_head.pretrained = pretrained
self.roi_head = build_head(roi_head)
self.train_cfg = train_cfg
self.test_cfg = test_cfg
def forward_train(self,
img,
img_metas,
gt_bboxes,
gt_labels,
gt_bboxes_ignore=None,
gt_masks=None,
proposals=None,
**kwargs):
"""
Args:
img (Tensor): of shape (N, C, H, W) encoding input images.
Typically these should be mean centered and std scaled.
img_metas (list[dict]): list of image info dict where each dict
has: 'img_shape', 'scale_factor', 'flip', and may also contain
'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'.
For details on the values of these keys see
`mmdet/datasets/pipelines/formatting.py:Collect`.
gt_bboxes (list[Tensor]): Ground truth bboxes for each image with
shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format.
gt_labels (list[Tensor]): class indices corresponding to each box
gt_bboxes_ignore (None | list[Tensor]): specify which bounding
boxes can be ignored when computing the loss.
gt_masks (None | Tensor) : true segmentation masks for each box
used if the architecture supports a segmentation task.
proposals : override rpn proposals with custom proposals. Use when
`with_rpn` is False.
Returns:
dict[str, Tensor]: a dictionary of loss components
"""
x = self.extract_feat(img)
losses = dict()
# RPN forward and loss
if self.with_rpn:
proposal_cfg = self.train_cfg.get('rpn_proposal',
self.test_cfg.rpn)
rpn_losses, proposal_list = self.rpn_head.forward_train(
x,
img_metas,
gt_bboxes,
gt_labels=None,
gt_bboxes_ignore=gt_bboxes_ignore,
proposal_cfg=proposal_cfg,
**kwargs)
losses.update(rpn_losses)
else:
proposal_list = proposals
roi_losses = self.roi_head.forward_train(x, img_metas, proposal_list,
gt_bboxes, gt_labels,
gt_bboxes_ignore, gt_masks,
**kwargs)
losses.update(roi_losses)
return losses
def simple_test(self, img, img_metas, proposals=None, rescale=False):
"""Test without augmentation."""
assert self.with_bbox, 'Bbox head must be implemented.'
x = self.extract_feat(img)
if proposals is None:
proposal_list = self.rpn_head.simple_test_rpn(x, img_metas)
else:
proposal_list = proposals
return self.roi_head.simple_test(
x, proposal_list, img_metas, rescale=rescale)
其他的yolo、centernet、faster_rcnn等类基本都是基于以上两个类继承而来的。
三、Heads
BaseDenseHead中提供了loss的接口,在forward_train时计算loss:
class BaseDenseHead(BaseModule, metaclass=ABCMeta):
"""Base class for DenseHeads."""
@abstractmethod
def loss(self, **kwargs):
"""Compute losses of the head."""
pass
def forward_train(self,
x,
img_metas,
gt_bboxes,
gt_labels=None,
gt_bboxes_ignore=None,
proposal_cfg=None,
**kwargs):
"""
Args:
x (list[Tensor]): Features from FPN.
img_metas (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc.
gt_bboxes (Tensor): Ground truth bboxes of the image,
shape (num_gts, 4).
gt_labels (Tensor): Ground truth labels of each box,
shape (num_gts,).
gt_bboxes_ignore (Tensor): Ground truth bboxes to be
ignored, shape (num_ignored_gts, 4).
proposal_cfg (mmcv.Config): Test / postprocessing configuration,
if None, test_cfg would be used
Returns:
tuple:
losses: (dict[str, Tensor]): A dictionary of loss components.
proposal_list (list[Tensor]): Proposals of each image.
"""
outs = self(x)
if gt_labels is None:
loss_inputs = outs + (gt_bboxes, img_metas)
else:
loss_inputs = outs + (gt_bboxes, gt_labels, img_metas)
losses = self.loss(*loss_inputs, gt_bboxes_ignore=gt_bboxes_ignore)
if proposal_cfg is None:
return losses
else:
proposal_list = self.get_bboxes(
*outs, img_metas=img_metas, cfg=proposal_cfg)
return losses, proposal_list
def simple_test(self, feats, img_metas, rescale=False):
"""Test function without test-time augmentation.
Args:
feats (tuple[torch.Tensor]): Multi-level features from the
upstream network, each is a 4D-tensor.
img_metas (list[dict]): List of image information.
rescale (bool, optional): Whether to rescale the results.
Defaults to False.
Returns:
list[tuple[Tensor, Tensor]]: Each item in result_list is 2-tuple.
The first item is ``bboxes`` with shape (n, 5),
where 5 represent (tl_x, tl_y, br_x, br_y, score).
The shape of the second tensor in the tuple is ``labels``
with shape (n, ).
"""
return self.simple_test_bboxes(feats, img_metas, rescale=rescale)
基于该基类,拓展了不同的head,如下图所示:
以centernet为例:
@HEADS.register_module()
class CenterNetHead(BaseDenseHead, BBoxTestMixin):
"""Objects as Points Head. CenterHead use center_point to indicate object's
position. Paper link
Args:
in_channel (int): Number of channel in the input feature map.
feat_channel (int): Number of channel in the intermediate feature map.
num_classes (int): Number of categories excluding the background
category.
loss_center_heatmap (dict | None): Config of center heatmap loss.
Default: GaussianFocalLoss.
loss_wh (dict | None): Config of wh loss. Default: L1Loss.
loss_offset (dict | None): Config of offset loss. Default: L1Loss.
train_cfg (dict | None): Training config. Useless in CenterNet,
but we keep this variable for SingleStageDetector. Default: None.
test_cfg (dict | None): Testing config of CenterNet. Default: None.
init_cfg (dict or list[dict], optional): Initialization config dict.
Default: None
"""
def __init__(self,
in_channel,
feat_channel,
num_classes,
loss_center_heatmap=dict(
type='GaussianFocalLoss', loss_weight=1.0),
loss_wh=dict(type='L1Loss', loss_weight=0.1),
loss_offset=dict(type='L1Loss', loss_weight=1.0),
train_cfg=None,
test_cfg=None,
init_cfg=None):
super(CenterNetHead, self).__init__(init_cfg)
self.num_classes = num_classes
self.heatmap_head = self._build_head(in_channel, feat_channel,
num_classes)
self.wh_head = self._build_head(in_channel, feat_channel, 2)
self.offset_head = self._build_head(in_channel, feat_channel, 2)
self.loss_center_heatmap = build_loss(loss_center_heatmap)
self.loss_wh = build_loss(loss_wh)
self.loss_offset = build_loss(loss_offset)
self.train_cfg = train_cfg
self.test_cfg = test_cfg
self.fp16_enabled = False
def forward(self, feats):
"""Forward features. Notice CenterNet head does not use FPN.
Args:
feats (tuple[Tensor]): Features from the upstream network, each is
a 4D-tensor.
Returns:
center_heatmap_preds (List[Tensor]): center predict heatmaps for
all levels, the channels number is num_classes.
wh_preds (List[Tensor]): wh predicts for all levels, the channels
number is 2.
offset_preds (List[Tensor]): offset predicts for all levels, the
channels number is 2.
"""
return multi_apply(self.forward_single, feats)
def forward_single(self, feat):
"""Forward feature of a single level.
Args:
feat (Tensor): Feature of a single level.
Returns:
center_heatmap_pred (Tensor): center predict heatmaps, the
channels number is num_classes.
wh_pred (Tensor): wh predicts, the channels number is 2.
offset_pred (Tensor): offset predicts, the channels number is 2.
"""
center_heatmap_pred = self.heatmap_head(feat).sigmoid()
wh_pred = self.wh_head(feat)
offset_pred = self.offset_head(feat)
return center_heatmap_pred, wh_pred, offset_pred
@force_fp32(apply_to=('center_heatmap_preds', 'wh_preds', 'offset_preds'))
def loss(self,
center_heatmap_preds,
wh_preds,
offset_preds,
gt_bboxes,
gt_labels,
img_metas,
gt_bboxes_ignore=None):
"""Compute losses of the head.
Args:
center_heatmap_preds (list[Tensor]): center predict heatmaps for
all levels with shape (B, num_classes, H, W).
wh_preds (list[Tensor]): wh predicts for all levels with
shape (B, 2, H, W).
offset_preds (list[Tensor]): offset predicts for all levels
with shape (B, 2, H, W).
gt_bboxes (list[Tensor]): Ground truth bboxes for each image with
shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format.
gt_labels (list[Tensor]): class indices corresponding to each box.
img_metas (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc.
gt_bboxes_ignore (None | list[Tensor]): specify which bounding
boxes can be ignored when computing the loss. Default: None
Returns:
dict[str, Tensor]: which has components below:
- loss_center_heatmap (Tensor): loss of center heatmap.
- loss_wh (Tensor): loss of hw heatmap
- loss_offset (Tensor): loss of offset heatmap.
"""
assert len(center_heatmap_preds) == len(wh_preds) == len(
offset_preds) == 1
center_heatmap_pred = center_heatmap_preds[0]
wh_pred = wh_preds[0]
offset_pred = offset_preds[0]
target_result, avg_factor = self.get_targets(gt_bboxes, gt_labels,
center_heatmap_pred.shape,
img_metas[0]['pad_shape'])
center_heatmap_target = target_result['center_heatmap_target']
wh_target = target_result['wh_target']
offset_target = target_result['offset_target']
wh_offset_target_weight = target_result['wh_offset_target_weight']
# Since the channel of wh_target and offset_target is 2, the avg_factor
# of loss_center_heatmap is always 1/2 of loss_wh and loss_offset.
loss_center_heatmap = self.loss_center_heatmap(
center_heatmap_pred, center_heatmap_target, avg_factor=avg_factor)
loss_wh = self.loss_wh(
wh_pred,
wh_target,
wh_offset_target_weight,
avg_factor=avg_factor * 2)
loss_offset = self.loss_offset(
offset_pred,
offset_target,
wh_offset_target_weight,
avg_factor=avg_factor * 2)
return dict(
loss_center_heatmap=loss_center_heatmap,
loss_wh=loss_wh,
loss_offset=loss_offset)
mmdetection框架处理得更好,分成了detectors,backbones, necks, dense_heads, roi_heads, seg_heads。其中,,。其他backbones, necks, dense_heads, roi_heads, seg_heads作为component,各自有自己的base定义接口,并扩展了不同经典论文的结构可以直接使用。