堆排序详解+TOP-K问题

上上篇链接: 堆的实现+堆排序_i跑跑的博客-CSDN博客


堆排序详解+TOP-K问题_第1张图片


目录

分析上上篇堆排序

思路

时间空间复杂度

优化堆排序 

向上调整建堆

分析

图解

时间复杂度

代码实现

 向下调整建堆

 分析

图解

时间复杂度 

代码实现

总结 

排序 

思路分析

排序思想

降序建小堆证明

代码实现

小堆变大堆:

TOP-K问题

什么是TOP-K问题?

思路

时间复杂度

空间复杂度

代码实现

随机数据测试 

添加排序程序


分析上上篇堆排序

上篇介绍二叉树笔记在最后实现了一个简单的堆排序:

思路

先创建一个堆,用堆堆顶的性质:选出最大或最小

删除堆顶元素的性质:找出次大或次小

对数组进行排序

堆排序详解+TOP-K问题_第2张图片+

时间空间复杂度

插入和删除的时间复杂度为O(logN),最差情况下是二叉树的高度次

因为是依次插入删除,与节点个数有关,因此排序算法的时间复杂度为O(N*logN)

空间复杂度为O(N),因为要先创建一个堆,插入数组数据,大小与数组大小有关

void HeapSort(int* a,int size)
{
	HP hp;
	HeapInit(&hp);

    //时间复杂度O(N*logN)
	for (int i = 0;i

堆排序详解+TOP-K问题_第3张图片


 优化堆排序 

优化目标:时间复杂度O(N*logN)

                  空间复杂度O(1)

之前是先创建堆,再把数组进行插入,这次我们直接在数组里面进行建堆,令数组变成堆,使堆排序算法的空间复杂度为O(1)

在数组中有两种建堆方法:向上调整建堆

                                           向下调整建堆

向上调整建堆

为了方便讲解,将堆向上调整在这里展示出来,以建小堆为例

分析

直接在数组中进行 size为数组元素个数

向上调整时要保证以起始节点为末尾的树必须是堆

第一个数为堆顶,从第二个数开始向上调整

从前往后,依次向上调整


图解

堆排序详解+TOP-K问题_第4张图片


时间复杂度

堆排序详解+TOP-K问题_第5张图片

代码实现

//向上调整
//建小堆为例
void Up(HPDataType* a,size_t child)
{
	size_t parent = (child - 1) / 2;
	while (child>0)
	{
		if (a[child] < a[parent])
		{
			swap(&a[child], &a[parent]);
			child = parent;
			parent = (child - 1) / 2;
		}
		else
		{
			break;
		}
	}
}

void HeapSort(int* a,int size)
{
	//向上调整建堆
	//分析后是件复杂度为O(N*logN)
	for (int i = 1;i

 向下调整建堆

 分析

向下调整时要保证以起始节点为堆顶的树的左子树和右子树为堆

从第一个非叶子节点为堆顶开始向下调整

从后往前,依次向下调整

图解

堆排序详解+TOP-K问题_第6张图片

时间复杂度 

堆排序详解+TOP-K问题_第7张图片

代码实现

//建小堆为例
void Down(HPDataType* a, size_t parent, size_t size)
{
	size_t child = parent * 2 + 1;
	while (child < size)
	{
		if (child + 1 =0; i--)
	{
		Down(a,i, size);
	}
}

总结 

向上调整建堆
时间复杂度为O(N*logN)

向下调整建堆
时间复杂度为O(N)

因此采用向下调整建堆效率更高

排序 

升序建大堆

降序建小堆


思路分析

1. 注意:我们只是对数组进行向上或向下调整使它变成堆

           没有创建删除堆顶元素插入、入堆等功能接口

           因此HeapTop入数组和HeapPop删堆顶不能用

2. 可能有小伙伴说,那我建立这两个函数接口再使用不就行了嘛?

不可以,如果这样做,那么必然会开辟新数组将堆顶元素放入

空间复杂度变为O(N)

原本建好的堆进行堆顶与末尾的交换删除

不符合我们的优化目标

3. 那么要使空间复杂度为O(1),就必须在原数组中进行排序


排序思想

1.交换堆顶与末尾节点的元素

2.对堆前n-1个节点从堆顶开始进行向下调整

3.此时堆顶元素为最大或最小的元素

4.交换堆顶元素与第n-1个元素

5.重复上述过程,完成升序或降序

注意:末尾节点的下标更新


降序建小堆证明

堆排序详解+TOP-K问题_第8张图片

 升序建大堆同理分析即可。

结论:升序建大堆   降序建小堆


代码实现

先向下调整建堆(效率高)

i 为第一个非叶子节点下标

记录最后一个数据下标 end

当end=1时,结束交换和向下调整

注意:向下调整函数参数

a为数组起始地址

parent为双亲节点的下标

size为调整的元素个数

void Down(HPDataType* a, size_t parent, size_t size);

下面代码中要注意end代表的含义

while前代表最后一个元素下标

while中代表的是要调整的元素个数

void HeapSort(int* a,int size)
{
	//升序建大堆
	//降序建小堆
	for (int i = (size-1-1)/2; i>=0; i--)
	{
		Down(a,i, size);
	}
	//最后一个数据的下标
	size_t end = size - 1;
	while (end>0)
	{
		swap(&a[0],&a[end]);
		Down(a,0,end);
		end--;
	}
}

这样堆排序就可以实现啦

决定升序还是降序,创建大堆或小堆即可

小堆变大堆:

改变建堆时的大于小于号即可

child和child+1、child和parent的比较符号


堆排序详解+TOP-K问题_第9张图片

TOP-K问题

什么是TOP-K问题?

求数据结合中前K个最大的元素或者最小的元素,一般情况下数据量都比较大。
比如:专业前10名、世界500强、富豪榜、游戏中前100的活跃玩家等。


对于Top-K问题,能想到的最简单直接的方式就是排序

如果数据量非常大(几十个G),排序就不太可取了,内存会非常大,效率极低

最佳的方式就是用堆排序来解决

思路

1. 用数据集合中前K个元素来建堆
    前k个最大的元素,则建小堆
    前k个最小的元素,则建大堆

2. 用剩余的N-K个元素依次与堆顶元素来比较

    小堆时,比堆顶大的元素替换堆顶

    向下调整,保证堆的结构

    大堆时,比堆顶小的元素替换堆顶

    向下调整,保证堆的结构

依次比较完后,堆里面就是所有数据中最大或最小的前K个元素

只需要遍历一次即可


时间复杂度

建立堆为K,最坏情况下剩余的N-K个数都要进行调整

调整次数为logK*(N-K)次

O(K+logK*(N-K))

K大小不确定,不能省略

空间复杂度

只需要开辟K个空间来建堆

O(K)

代码实现

//TOP-K问题
void PrintTopK(int* a, int n, int k)
{
	// 1. 建堆--用a中前k个元素建堆
	int* kHeap = (int*)malloc(sizeof(int)*k);
	if (kHeap == NULL)
	{
		printf("malloc fail\n");
		exit(-1);
	}

	//将前k个数插入数组kHeap中
	for (int i = 0;i= 0; i--)
	{
		Down(a, i, k);
	}

	// 2. 将剩余n-k个元素依次与堆顶元素交换,不满则则替换
	for (int i = k;ikHeap[0])
		{
			kHeap[0] = a[i];
			Down(kHeap,0,k);
		}
	}

	// 3. 打印最大或最小的前k个
	for (int j = 0;j

随机数据测试 

生成100000以内的随机数,将10个100000内的随机位置变成比100000大的数

找出10000个数中最大的十个数

运行代码

void TestTopk()
{
	int n = 10000;
	int* a = (int*)malloc(sizeof(int)*n);
	srand(time(0));
	for (size_t i = 0; i < n; ++i)
	{
		a[i] = rand() % 1000000;
	}
	a[5] = 1000000 + 1;
	a[1231] = 1000000 + 2;
	a[531] = 1000000 + 3;
	a[5121] = 1000000 + 4;
	a[115] = 1000000 + 5;
	a[2335] = 1000000 + 6;
	a[9999] = 1000000 + 7;
	a[76] = 1000000 + 8;
	a[423] = 1000000 + 9;
	a[3144] = 1000000 + 10;
	PrintTopK(a, n, 10);
}


int main()
{
	TestTopk();
	return 0;
}

运行结果:

堆排序详解+TOP-K问题_第10张图片

可以得到最大的10个数,但他们是无序的

添加排序程序 

//TOP-K问题
void PrintTopK(int* a, int n, int k)
{
	// 1. 建堆--用a中前k个元素建堆
	int* kHeap = (int*)malloc(sizeof(int)*k);
	if (kHeap == NULL)
	{
		printf("malloc fail\n");
		exit(-1);
	}

	//将前k个数插入数组kHeap中
	for (int i = 0;i= 0; i--)
	{
		Down(a, i, k);
	}

	// 2. 将剩余n-k个元素依次与堆顶元素交换,不满则则替换
	for (int i = k;ikHeap[0])
		{
			kHeap[0] = a[i];
			Down(kHeap,0,k);
		}
	}

	// 3. 排序
	//最后一个数据的下标
	size_t end = k - 1;
	while (end>0)
	{
		swap(&kHeap[0], &kHeap[end]);
		Down(kHeap, 0, end);
		end--;
	}


	// 4. 打印排序后的前k个
	for (int j = 0;j

运行结果

堆排序详解+TOP-K问题_第11张图片


堆排序和TOP-K问题的笔记到这里就结束啦,欢迎各位伙伴在留言区里交流评价噢,求赞求赞求赞!!! 

堆排序详解+TOP-K问题_第12张图片

你可能感兴趣的:(笔记,算法,链表,数据结构,c语言)