深度学习环境搭建:Anaconda+python3.8+Tensorflow-gpu2.6+pycharm安装记录

深度学习环境搭建
2021年11月15日
10

安装流程

  • 1.Anaconda安装
  • 2.CUDA和Cudnn的安装
        • 2.1查看电脑所对应的CUDA版本(即已安装的驱动):
        • 2.2CUDA安装参考教程:
        • 2.3Cudnn的安装参考教程(同上):
        • 2.4CUDA和Cudnn安装成功验证(同上):
  • 3.Tensorflow-gpu安装
  • 4.Pycharm安装
        • 4.1软件安装
  • 5.将Tensorflow环境添加到Pycharm中

1.Anaconda安装

Anaconda官网:链接: Anaconda | Individual Edition.
安装参考教程:链接: 深度学习环境配置3——windows下的tensorflow-gpu=2.2.0环境配置_Bubbliiiing的学习小课堂-CSDN博客.

2.CUDA和Cudnn的安装

2.1查看电脑所对应的CUDA版本(即已安装的驱动):

链接: win10 查看GPU型号,驱动版本,CUDA版本_Strive_For_Future的博客-CSDN博客.
链接: https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html.
深度学习环境搭建:Anaconda+python3.8+Tensorflow-gpu2.6+pycharm安装记录_第1张图片

2.2CUDA安装参考教程:

主要参考CUDA、Cudnn的安装和环境变量的配置,以及验证是否安装成功
链接: 深度学习环境搭建(GPU)CUDA安装(完全版)_CSDN博客-CSDN博客_cuda安装.

CUDA历史版本的安装网站:
链接: CUDA Toolkit Archive | NVIDIA Developer.
这里对应的是CUDA11.3.1
深度学习环境搭建:Anaconda+python3.8+Tensorflow-gpu2.6+pycharm安装记录_第2张图片

2.3Cudnn的安装参考教程(同上):

链接: 深度学习环境搭建(GPU)CUDA安装(完全版)_CSDN博客-CSDN博客_cuda安装.

2.4CUDA和Cudnn安装成功验证(同上):

链接: 深度学习环境搭建(GPU)CUDA安装(完全版)_CSDN博客-CSDN博客_cuda安装.

3.Tensorflow-gpu安装

配置tensorflow-gpu环境参考教程:
链接: https://blog.csdn.net/weixin_44791964/article/details/109161493.

版本对应关系:tensorflow-gpu – python – CUDA:
链接: [tensorflow]各个tensorflow版本和CUDA版本对应,以及各个GPU版本CUDA和cuDNN对应_帅兄心安否的博客-CSDN博客_tensorflow和cuda对应版本.
这里创建python3.8,
可利用conda search --full-name tensorflow查看该python版本可安装的tensorflow版本
可以考虑更换镜像源安装
:链接: Python切换pip镜像源(安装源)的方法详解_wls.wang-CSDN博客_python 镜像源.

4.Pycharm安装

4.1软件安装

软件官网:PyCharm:链接: PyCharm:JetBrains为专业开发者提供的Python IDE.
pycharm有专业版和社区版等版本,社区版是免费的。下载软件后完成激活。

5.将Tensorflow环境添加到Pycharm中

将自己安装的环境路径添加到解释器
查看路径:conda info --envs
安装教程:链接: Anaconda安装Tensorflow,然后在Pycharm中使用Tensorflow(填坑记)_あなたを待って-CSDN博客.
深度学习环境搭建:Anaconda+python3.8+Tensorflow-gpu2.6+pycharm安装记录_第3张图片

你可能感兴趣的:(机器学习,人工智能,tensorflow,tensorflow,深度学习,机器学习)