第六讲学习笔记如下:
视觉SLAM十四讲学习笔记-第六讲-非线性优化的状态估计问题_goldqiu的博客-CSDN博客
视觉SLAM十四讲学习笔记-第六讲-非线性优化的非线性最小二乘问题_goldqiu的博客-CSDN博客
视觉SLAM十四讲学习笔记-第六讲-非线性优化的实践-高斯牛顿法和曲线拟合_goldqiu的博客-CSDN博客
前五讲学习笔记总结如下:
视觉SLAM十四讲学习笔记---前三讲学习笔记总结之SLAM的作用、变换和位姿表示_goldqiu的博客-CSDN博客
视觉SLAM十四讲学习笔记-第四讲---第五讲学习笔记总结---李群和李代数、相机_goldqiu的博客-CSDN博客
第六讲
视觉SLAM十四讲学习笔记-第六讲学习笔记总结(1)---非线性优化原理
总结:
一. 文伯格—马夸尔特方法(LM法):高斯牛顿法只在问题性质比较好时比较有效果,但问题比较病态时可以采用LM法,能够更加稳定实现优化求解问题。
二. 使用三种方法对曲线
进行拟合:
int main(int argc, char **argv) {
double ar = 1.0, br = 2.0, cr = 1.0; // 真实参数值
double ae = 2.0, be = -1.0, ce = 5.0; // 估计参数值
int N = 100; // 数据点
double w_sigma = 1.0; // 噪声Sigma值
double inv_sigma = 1.0 / w_sigma;
cv::RNG rng; // OpenCV随机数产生器
vector x_data, y_data; // 数据
for (int i = 0; i < N; i++) {
double x = i / 100.0;
x_data.push_back(x);
y_data.push_back(exp(ar * x * x + br * x + cr) + rng.gaussian(w_sigma * w_sigma));
}
// 开始Gauss-Newton迭代
int iterations = 100; // 迭代次数
double cost = 0, lastCost = 0; // 本次迭代的cost和上一次迭代的cost
chrono::steady_clock::time_point t1 = chrono::steady_clock::now();
for (int iter = 0; iter < iterations; iter++) {
Matrix3d H = Matrix3d::Zero(); // Hessian = J^T W^{-1} J in Gauss-Newton
Vector3d b = Vector3d::Zero(); // bias
cost = 0;
for (int i = 0; i < N; i++) {
double xi = x_data[i], yi = y_data[i]; // 第i个数据点
double error = yi - exp(ae * xi * xi + be * xi + ce);
Vector3d J; // 雅可比矩阵
J[0] = -xi * xi * exp(ae * xi * xi + be * xi + ce); // de/da
J[1] = -xi * exp(ae * xi * xi + be * xi + ce); // de/db
J[2] = -exp(ae * xi * xi + be * xi + ce); // de/dc
H += inv_sigma * inv_sigma * J * J.transpose();
b += -inv_sigma * inv_sigma * error * J;
cost += error * error;
}
// 求解线性方程 Hx=b
Vector3d dx = H.ldlt().solve(b);
if (isnan(dx[0])) {
cout << "result is nan!" << endl;
break;
}
if (iter > 0 && cost >= lastCost) {
cout << "cost: " << cost << ">= last cost: " << lastCost << ", break." << endl;
break;
}
ae += dx[0];
be += dx[1];
ce += dx[2];
lastCost = cost;
cout << "total cost: " << cost << ", \t\tupdate: " << dx.transpose() <<
"\t\testimated params: " << ae << "," << be << "," << ce << endl;
}
chrono::steady_clock::time_point t2 = chrono::steady_clock::now();
chrono::duration time_used = chrono::duration_cast>(t2 - t1);
cout << "solve time cost = " << time_used.count() << " seconds. " << endl;
cout << "estimated abc = " << ae << ", " << be << ", " << ce << endl;
return 0;
}
a. 用chrono类中的接口进行优化求解时间的计算。
b. 手写高斯牛顿优化器的步骤:
1)对待优化变量a、b、c设定初值,初始化的时候设定了。
2)在初值的条件下,估计输出y与真实输出y比较得到误差,定义误差为:
3)求出每个误差项对于状态变量(a,b,c)的导数
这里待估计变量是3x1,故J矩阵为3维向量。
4)第2步和第3步根据数据长度循环100次,对H(x)和g(x)进行增量处理。
根据以下公式:
H += inv_sigma * inv_sigma * J * J.transpose();
b += -inv_sigma * inv_sigma * error * J;
其实这里就是进行求和处理。误差的平方为代价,在优化过程中代价会越来越小,代价达到一定条件或者达到优化次数限制后就跳出优化。
5)调用eigen库的方法进行线性方程的求解,求解得到的dx对估计值进行更新。
6)重复第2~5步的优化求解迭代过程,最多100次。当dx为0时或优化的代价变大则跳出优化过程,此时说明优化过程已经开始收敛。(这里可以改变优化跳出的条件)
2.用ceres进行曲线拟合的优化问题求解
a.构建最小二乘问题
// 构建最小二乘问题
ceres::Problem problem;
for (int i = 0; i < N; i++) {
problem.AddResidualBlock( // 向问题中添加误差项
// 使用自动求导,模板参数:误差类型,输出维度,输入维度,维数要与前面struct中一致
new ceres::AutoDiffCostFunction(
new CURVE_FITTING_COST(x_data[i], y_data[i])
),
nullptr, // 核函数,这里不使用,为空
abc // 待估计参数,初值
);
}
b.定义残差计算的模板类,使用了()运算符重载的仿函数功能。
// 代价函数的计算模型
struct CURVE_FITTING_COST {
CURVE_FITTING_COST(double x, double y) : _x(x), _y(y) {}
// 残差的计算
template
bool operator()(
const T *const abc, // 模型参数,有3维
T *residual) const {
residual[0] = T(_y) - ceres::exp(abc[0] * T(_x) * T(_x) + abc[1] * T(_x) + abc[2]); // y-exp(ax^2+bx+c)
return true;
}
const double _x, _y; // x,y数据
};
这里状态变量是三维,分别为a,b,c;残差输出是一维,所以是residual[0]。
c. 配置求解器,进行优化,会按照前面定义的残差计算方式进行优化求解。
// 配置求解器
ceres::Solver::Options options; // 这里有很多配置项可以填
options.linear_solver_type = ceres::DENSE_NORMAL_CHOLESKY; // 增量方程如何求解,用CHOLESKY的方法
options.minimizer_progress_to_stdout = true; // 输出到cout
ceres::Solver::Summary summary; // 优化信息
chrono::steady_clock::time_point t1 = chrono::steady_clock::now();
ceres::Solve(options, &problem, &summary); // 开始优化,执行到这里会跳到前面进行优化求解
chrono::steady_clock::time_point t2 = chrono::steady_clock::now();
chrono::duration time_used = chrono::duration_cast>(t2 - t1);
cout << "solve time cost = " << time_used.count() << " seconds. " << endl;
3.使用g2o进行曲线拟合的优化问题求解。图优化其实就是用概率图去描述优化问题然后进行求解。
将曲线拟合问题抽象成图优化。这个过程中,节点为优化变量, 边为误差项。在这个问题只有一个顶点:曲线模型的参数 a, b, c;而各个带噪声的数据点, 构成了一个个误差项,也就是图优化的边。这里的边是一元边(Unary Edge),即只连接一个顶点。事实上,图优化中一条边可以连接一个、两个或多个顶点,这主要反映每个误差与多少个优化变量有关。
主要步骤:
主函数中:
// 构建图优化,先设定g2o
typedef g2o::BlockSolver> BlockSolverType; // 每个误差项优化变量维度为3,误差值维度为1
typedef g2o::LinearSolverDense LinearSolverType; // 线性求解器类型
// 建立优化求解器,选择梯度下降方法,可以从GN, LM, DogLeg 中选,这里选的是高斯牛顿法
auto solver = new g2o::OptimizationAlgorithmGaussNewton(
g2o::make_unique(g2o::make_unique()));
g2o::SparseOptimizer optimizer; // 图模型
optimizer.setAlgorithm(solver); // 设置求解器
optimizer.setVerbose(true); // 打开调试输出
// 往图中增加顶点
CurveFittingVertex *v = new CurveFittingVertex();
v->setEstimate(Eigen::Vector3d(ae, be, ce));
v->setId(0);
optimizer.addVertex(v);
// 往图中增加边
for (int i = 0; i < N; i++) {
CurveFittingEdge *edge = new CurveFittingEdge(x_data[i]);
edge->setId(i);
edge->setVertex(0, v); // 设置连接的顶点
edge->setMeasurement(y_data[i]); // 观测数值
edge->setInformation(Eigen::Matrix::Identity() * 1 / (w_sigma * w_sigma)); // 信息矩阵:协方差矩阵之逆
optimizer.addEdge(edge);
}
// 执行优化
cout << "start optimization" << endl;
chrono::steady_clock::time_point t1 = chrono::steady_clock::now();
optimizer.initializeOptimization();
optimizer.optimize(10);
chrono::steady_clock::time_point t2 = chrono::steady_clock::now();
chrono::duration time_used = chrono::duration_cast>(t2 - t1);
cout << "solve time cost = " << time_used.count() << " seconds. " << endl;
图优化顶点类:
// 曲线模型的顶点,模板参数:优化变量维度和数据类型
class CurveFittingVertex : public g2o::BaseVertex<3, Eigen::Vector3d> {
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
// 重置
virtual void setToOriginImpl() override {
_estimate << 0, 0, 0;
}
// 更新
virtual void oplusImpl(const double *update) override {
_estimate += Eigen::Vector3d(update);
}
// 存盘和读盘:留空
virtual bool read(istream &in) {}
virtual bool write(ostream &out) const {}
};
这个类继承BaseVertex类,重写了一些虚函数:
图优化边类:
// 误差模型 模板参数:观测值维度,类型,连接顶点类型
class CurveFittingEdge : public g2o::BaseUnaryEdge<1, double, CurveFittingVertex> {
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
CurveFittingEdge(double x) : BaseUnaryEdge(), _x(x) {}
// 计算曲线模型误差
virtual void computeError() override {
const CurveFittingVertex *v = static_cast (_vertices[0]);
const Eigen::Vector3d abc = v->estimate();
_error(0, 0) = _measurement - std::exp(abc(0, 0) * _x * _x + abc(1, 0) * _x + abc(2, 0));
}
// 计算雅可比矩阵
virtual void linearizeOplus() override {
const CurveFittingVertex *v = static_cast (_vertices[0]);
const Eigen::Vector3d abc = v->estimate();
double y = exp(abc[0] * _x * _x + abc[1] * _x + abc[2]);
_jacobianOplusXi[0] = -_x * _x * y;
_jacobianOplusXi[1] = -_x * y;
_jacobianOplusXi[2] = -y;
}
virtual bool read(istream &in) {}
virtual bool write(ostream &out) const {}
public:
double _x; // x 值, y 值为 _measurement
};
这个类继承BaseUnaryEdge类,重写了一些虚函数:
定义了顶点和边之后,在main函数里声明了一个图模型,然后按照生成的噪声数据,往图模型中添加顶点和边,最后调用优化函数进行优化。
三. 在SLAM中更多的问题是,一个带有许多个位姿和许多个空间点的优化问题如何求解。特别地,当位姿以李代数表示时,误差项关于位姿的导数如何计算。g2o提供了大量现成的顶点和边,非常便于位姿估计问题。而在 Ceres 中, 不得不自己实现每一个Cost Function,有一些不便。但是Ceres库提供了基于模板元的自动求导和运行时的数值求导,而g2o只提供了运行时数值求导这一种方式。对于大多数问题,如果能够推导出雅可比矩阵的解析形式并告诉优化库,就可以避免数值求导中的诸多问题,求解也更快。