数据分析离不开数据可视化,我们最常用的就是pandas,matplotlib,pyecharts当然还有Tableau,看到一篇文章介绍plotly制图后我也跃跃欲试,查看了相关资料开始尝试用它制图。
Plotly 是一款用来做数据分析和可视化的在线平台,功能非常强大,可以在线绘制很多图形比如条形图、散点图、饼图、直方图等等。而且还是支持在线编辑,以及多种语言python、javascript、matlab、R等许多API。它在python中使用也很简单,直接用pip install plotly就可以了。推荐最好在jupyter notebook中使用,pycharm操作不是很方便。使用Plotly可以画出很多媲美Tableau的高质量图:
plotly制图
我尝试做了折线图、散点图和直方图,首先导入库:
from plotly.graph_objs import Scatter,Layout
import plotlyimport plotly.offline as py
import numpy as np
import plotly.graph_objs as go
#setting offilne 离线模式
plotly.offline.init_notebook_mode(connected=True)
上面几行代码主要是引用一些库,plotly有在线和离线两种模式,在线模式需要有账号可以云编辑。我选用的离线模式,plotly设置为offline模式就可以直接在notebook里面显示了。
N = 100
random_x = np.linspace(0,1,N)
random_y0 = np.random.randn(N)+5
random_y1 = np.random.randn(N)random_y2 = np.random.randn(N)-5
#Create tracestrace0 = go.Scatter(
x = random_x,y = random_y0,mode = 'markers',
name = 'markers'
)trace1 = go.Scatter(
x = random_x,y = random_y1,mode = 'lines+markers',
name = 'lines+markers'
)trace2 = go.Scatter(
x = random_x,y = random_y2,mode = 'lines',
name = 'lines'
)data = [trace0,trace1,trace2]py.iplot(data)
折线图
随机设置4个参数,一个x轴的数字和三个y轴的随机数据,制作出三种不同类型的图。trace0是markers,trace1是lines和markers,trace3是lines。然后把三种图放在data这个列表里面,调用py.iplot(data)即可。
绘制的图片系统默认配色也挺好看的~
trace1 = go.Scatter(
y = np.random.randn(500),
mode = 'markers',
marker = dict(size = 16,
color = np.random.randn(500),
colorscale = 'Viridis',
showscale = True
))data = [trace1]py.iplot(data)
把mode设置为markers就是散点图,然后marker里面设置一组参数,比如颜色的随机范围,散点的大小,还有图例等等。
散点图
trace0 = go.Bar(
x = ['Jan','Feb','Mar','Apr', 'May','Jun',
'Jul','Aug','Sep','Oct','Nov','Dec'],
y = [20,14,25,16,18,22,19,15,12,16,14,17],
name = 'Primary Product',
marker=dict(color = 'rgb(49,130,189)'
))trace1 = go.Bar(
x = ['Jan','Feb','Mar','Apr', 'May','Jun',
'Jul','Aug','Sep','Oct','Nov','Dec'],
y = [19,14,22,14,16,19,15,14,10,12,12,16],
name = 'Secondary Product',
marker=dict(color = 'rgb(204,204,204)'
))data = [trace0,trace1]py.iplot(data)
直方图
直方图是我们比较常用的一种图形,plotly绘制直方图的方式跟我们在pandas里面设置的有点类似,他们非常直观的体现了不同月份两个生产力之间的差异。
上面的制图只是plotly的冰山一角,都是一些最基本的用法,它还有很多很酷的用法和图形,尤其是跟pandas结合画的图非常漂亮。比如一些股票的K线图,大家有兴趣可以研究研究~
链接在此:https://plot.ly/python/
最后祝大家天天进步!!学习Python最重要的就是心态。我们在学习过程中必然会遇到很多难题,可能自己想破脑袋都无法解决。这都是正常的,千万别急着否定自己,怀疑自己。如果大家在刚开始学习中遇到困难,想找一个python学习交流环境,可以 加入我们 ,领取学习资料,一起讨论,会节约很多时间,减少很多遇到的难题。