卷积神经网络基础
卷积神经网络高级部分
刘二大人笔记链接
刘二大人视频链接
一共需要 M ( 输 出 C h a n n e l s ) ∗ N ( 输 入 C h a n n e l s ) M(输出Channels)*N(输入Channels) M(输出Channels)∗N(输入Channels)个卷积核
一次卷积后输出的每个Channels的数据大小会变成 ( i n p u t s w i d t h − k e r n e l s i z e + 1 ) ∗ ( i n p u t s h e i g h t − k e r n e l s i z e + 1 ) (inputs_{width}-kernel_{size}+1)*(inputs_{height}-kernel_{size}+1) (inputswidth−kernelsize+1)∗(inputsheight−kernelsize+1)
可以用padding参数使每个Channels数据大小保持不变,padding = 1 表示增加一圈,就是边缘的两行两列。
卷积(convolution)后,C(Channels)可变可不变(一般都变),W(width)和H(Height)可变可不变,取决于是否padding和kernel的大小。
torch.nn.MaxPool2d(2)
import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim
# 老样子准备数据
batch_size = 64
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
train_dataset = datasets.MNIST(root=r'D:\code_management\pythonProject\dataset/mnist/', train=True, download=False,
transform=transform)
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
test_dataset = datasets.MNIST(root=r'D:\code_management\pythonProject\dataset/dataset/mnist/', train=False,
download=False, transform=transform)
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)
# 设计神经网络
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = torch.nn.Conv2d(10, 20, kernel_size=5)
self.pooling = torch.nn.MaxPool2d(2) # 只是用池化stride为2的池化层
self.fc = torch.nn.Linear(320, 10)
# 为320的计算过程(根据forward中的值进行)
# 对于单个图像
# 1*28*28 ---> 10*24*24 ---> 10*12*12 ---> 20*8*8 ---> 20*4*4 = 320
# 全连接 : 320 ---> 10
def forward(self, x):
# flatten data from (n,1,28,28) to (n, 784)
# 手写数据集只有一个channels,n为 batch_size
batch_size = x.size(0) # 取出batch_size
x = F.relu(self.pooling(self.conv1(x))) # 先卷积后池化
x = F.relu(self.pooling(self.conv2(x)))
x = x.view(batch_size, -1) # 为进行全连接做准备,先从三维展成二维矩阵, -1 此处自动算出的是320
x = self.fc(x) # 全连接到10维度,一共10种
return x
model = Net()
# 使用GPU还是CPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
# 损失与优化方法
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
# 训练方法
def train(epoch):
running_loss = 0.0
for batch_idx, data in enumerate(train_loader, 0):
inputs, target = data
inputs, target = inputs.to(device), target.to(device)
outputs = model(inputs) # 训练
loss = criterion(outputs, target) # 算损失
optimizer.zero_grad() # 梯度清零
loss.backward() # 反向传播
optimizer.step() # 更新优化
running_loss += loss.item()
if batch_idx % 300 == 299:
print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))
running_loss = 0.0
def test():
correct = 0
total = 0
with torch.no_grad():
for data in test_loader:
images, labels = data
images, labels = images.to(device), labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, dim=1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('accuracy on test set: %d %% ' % (100 * correct / total))
if __name__ == '__main__':
for epoch in range(10):
train(epoch)
test()
卷积核大小为1的操作能通过减小维度较少计算量,但是有信息损失。
import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim
# 老样子准备数据
batch_size = 64
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
train_dataset = datasets.MNIST(root=r'D:\code_management\pythonProject\dataset/mnist/', train=True, download=False,
transform=transform)
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
test_dataset = datasets.MNIST(root=r'D:\code_management\pythonProject\dataset/mnist/', train=False,
download=False, transform=transform)
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)
# design model using class
class InceptionA(torch.nn.Module):
"""不论输入多少维度,都会以相同的width,height,以及88Channels输出"""
def __init__(self, in_channels):
super(InceptionA, self).__init__()
self.branch1x1 = torch.nn.Conv2d(in_channels, 16, kernel_size=1) # kernel_size=1数据width,height不变
self.branch5x5_1 = torch.nn.Conv2d(in_channels, 16, kernel_size=1) # kernel_size=1数据width,height不变
self.branch5x5_2 = torch.nn.Conv2d(16, 24, kernel_size=5, padding=2) # kernel_size=5,加两圈就数据width,height不变
self.branch3x3_1 = torch.nn.Conv2d(in_channels, 16, kernel_size=1) # kernel_size=1数据width,height不变
self.branch3x3_2 = torch.nn.Conv2d(16, 24, kernel_size=3, padding=1) # kernel_size=3,加1圈就数据width,height不变
self.branch3x3_3 = torch.nn.Conv2d(24, 24, kernel_size=3, padding=1) # kernel_size=3,加1圈就数据width,height不变
self.branch_pool = torch.nn.Conv2d(in_channels, 24, kernel_size=1) # kernel_size=1数据width,height不变
def forward(self, x):
"""一共存在四个并列的数据,最后cat合并"""
branch1x1 = self.branch1x1(x)
branch5x5 = self.branch5x5_1(x)
branch5x5 = self.branch5x5_2(branch5x5)
branch3x3 = self.branch3x3_1(x)
branch3x3 = self.branch3x3_2(branch3x3)
branch3x3 = self.branch3x3_3(branch3x3)
branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
branch_pool = self.branch_pool(branch_pool)
outputs = [branch1x1, branch5x5, branch3x3, branch_pool] # 24*3+16=88,所以88个Channels
return torch.cat(outputs, dim=1) # b,c,w,h c对应的是dim=1
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = torch.nn.Conv2d(88, 20, kernel_size=5) # 88 = 24x3 + 16
self.incep1 = InceptionA(in_channels=10) # 与conv1 中的10对应
self.incep2 = InceptionA(in_channels=20) # 与conv2 中的20对应
self.mp = torch.nn.MaxPool2d(2)
self.fc = torch.nn.Linear(1408, 10)
def forward(self, x):
"""数据要是batch_size,Channels,width,height四个维度"""
batch_size = x.size(0) # batch_size大小
x = F.relu(self.mp(self.conv1(x))) # [batch_size,1,28,28] ---> [batch_size,10,24,24] --->[batch_size,10,12,12] ---> 激活
x = self.incep1(x) # [batch_size,10,12,12] ---> [batch_size,88,12,12]
x = F.relu(self.mp(self.conv2(x))) # [batch_size,88,12,12] ---> [batch_size,20,8,8] ---> [batch_size,20,4,4] ---> 激活
x = self.incep2(x) # [batch_size,20,4,4] ---> [batch_size,88,4,4]
x = x.view(batch_size, -1) # [batch_size,88,4,4] ---> [batch_size,88*4*4] == [batch_size,1408]
x = self.fc(x) # 全连接激活 [batch_size,1408] ---> [batch_size,10]
return x
model = Net()
# 损失和优化
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
# 训练
def train(epoch):
running_loss = 0.0
for batch_idx, data in enumerate(train_loader, 0):
inputs, target = data
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, target)
loss.backward()
optimizer.step()
running_loss += loss.item()
if batch_idx % 300 == 299:
print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))
running_loss = 0.0
def test():
correct = 0
total = 0
with torch.no_grad():
for data in test_loader:
images, labels = data
outputs = model(images)
_, predicted = torch.max(outputs.data, dim=1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('accuracy on test set: %d %% ' % (100 * correct / total))
if __name__ == '__main__':
for epoch in range(10):
train(epoch)
test()
残差神经网络链接