PyTorch 实现CycleGAN 风格迁移

目录

一、前言

二、数据集

三、网络结构

四、代码

     (一)net

     (二)train

     (三)test

 五、结果

     (一)loss

     (二)训练可视化

     (三)测试结果

 六、完整代码


一、前言

        pix2pix对训练样本要求较高,需要成对的数据集,而这种样本的获取往往需要耗费很大精力。CycleGAN恰巧解决了该问题,实现两个domain之间的转换,即只需要准备两种风格的数据集,让GAN去学习将domain X中的图片转换成domain Y的风格(不改变domain X原图中物体,仅仅实现风格转换)。

        一种直观的思路是直接让G去学习domain X 到domain Y 以及domain Y 到domain X的映射关系,但这种方式会造成G生成图片的随机性太强,会使得生成的图片与输入的图片完全不相关,不仅违背了CycleGAN的目的,同时输出的结果也没有任何意义。

        作者认为这种转换应该具有循环一致性,比如在语言翻译中,把一段话从中文翻译成英文,再从英文翻译回中文,意思应该是相近的,CycleGAN就是采用了这种思想。假设Ga表示Domain X到Domain Y的生成器,Gb表示Domain Y 到Domain X 的生成器,那么让Domain X中的图片real_A通过Ga后生成的图片fake_A再通过Gb生成的rec_A应该和A是高度相似的,Domain Y到Domain X同理。

        CycleGAN中有两个生成器以及两个判别器,分别对应Domain X 到Domain Y 以及Domain Y到Domain X。

二、数据集

        这里我采用的是monet2photo数据集(莫奈画->真实风景照片),部分数据如下图所示。

        Domain X(monet):

PyTorch 实现CycleGAN 风格迁移_第1张图片

        Domain Y(photo):

PyTorch 实现CycleGAN 风格迁移_第2张图片

三、网络结构

        生成器G的结构如下图所示,判别器D与pix2pix相同,网络结构pix2pix。

        PyTorch 实现CycleGAN 风格迁移_第3张图片

四、代码

     (一)net

        初始化方式与源码不同。

import torch.nn as nn
from torchsummary import summary
from collections import OrderedDict


# 定义残差块
class Resnet_block(nn.Module):
    def __init__(self, in_channels):
        super(Resnet_block, self).__init__()
        block = []
        for i in range(2):
            block += [nn.ReflectionPad2d(1),
                      nn.Conv2d(in_channels, in_channels, 3, 1, 0),
                      nn.InstanceNorm2d(in_channels),
                      nn.ReLU(True) if i > 0 else nn.Identity()]
        self.block = nn.Sequential(*block)

    def forward(self, x):
        out = x + self.block(x)
        return out


class Cycle_Gan_G(nn.Module):
    def __init__(self):
        super(Cycle_Gan_G, self).__init__()
        net_dic = OrderedDict()
        # 三层卷积层
        net_dic.update({'first layer': nn.Sequential(
            nn.ReflectionPad2d(3),  # [3,256,256]  ->  [3,262,262]
            nn.Conv2d(3, 64, 7, 1),  # [3,262,262]  ->[64,256,256]
            nn.InstanceNorm2d(64),
            nn.ReLU(True)
        )})
        net_dic.update({'second_conv': nn.Sequential(
            nn.Conv2d(64, 128, 3, 2, 1),  # [128,128,128]
            nn.InstanceNorm2d(128),
            nn.ReLU(True)
        )})
        net_dic.update({'three_conv': nn.Sequential(
            nn.Conv2d(128, 256, 3, 2, 1),  # [256,64,64]
            nn.InstanceNorm2d(256),
            nn.ReLU(True)
        )})

        # 9层 resnet block
        for i in range(6):
            net_dic.update({'Resnet_block{}'.format(i + 1): Resnet_block(256)})

        # up_sample
        net_dic.update({'up_sample1': nn.Sequential(
            nn.ConvTranspose2d(256, 128, kernel_size=3, stride=2, padding=1, output_padding=1),
            nn.InstanceNorm2d(128),  # [128,128,128]
            nn.ReLU(True)
        )})
        net_dic.update({'up_sample2': nn.Sequential(
            nn.ConvTranspose2d(128, 64, kernel_size=3, stride=2, padding=1, output_padding=1),
            nn.InstanceNorm2d(64),  # [64,256,256]
            nn.ReLU(True)
        )})

        net_dic.update({'last_layer': nn.Sequential(
            nn.ReflectionPad2d(3),
            nn.Conv2d(64, 3, 7, 1),
            nn.Tanh()
        )})

        self.net_G = nn.Sequential(net_dic)
        self.init_weight()

    def init_weight(self):
        for w in self.modules():
            if isinstance(w, nn.Conv2d):
                nn.init.kaiming_normal_(w.weight, mode='fan_out')
                if w.bias is not None:
                    nn.init.zeros_(w.bias)
            elif isinstance(w, nn.ConvTranspose2d):
                nn.init.kaiming_normal_(w.weight, mode='fan_in')
            elif isinstance(w, nn.BatchNorm2d):
                nn.init.ones_(w.weight)
                nn.init.zeros_(w.bias)

    def forward(self, x):
        out = self.net_G(x)
        return out


class Cycle_Gan_D(nn.Module):
    def __init__(self):
        super(Cycle_Gan_D, self).__init__()

        # 定义基本的卷积\bn\relu
        def base_Conv_bn_lkrl(in_channels, out_channels, stride):
            if in_channels == 3:
                bn = nn.Identity
            else:
                bn = nn.InstanceNorm2d
            return nn.Sequential(
                nn.Conv2d(in_channels, out_channels, 4, stride, 1),
                bn(out_channels),
                nn.LeakyReLU(0.2, True)
            )

        D_dic = OrderedDict()
        in_channels = 3
        out_channels = 64
        for i in range(4):
            if i < 3:
                D_dic.update({'layer_{}'.format(i + 1): base_Conv_bn_lkrl(in_channels, out_channels, 2)})
            else:
                D_dic.update({'layer_{}'.format(i + 1): base_Conv_bn_lkrl(in_channels, out_channels, 1)})
            in_channels = out_channels
            out_channels *= 2
        D_dic.update({'last_layer': nn.Conv2d(512, 1, 4, 1, 1)})  # [batch,1,30,30]
        self.D_model = nn.Sequential(D_dic)

    def forward(self, x):
        return self.D_model(x)


if __name__ == '__main__':
    # G = Cycle_Gan_G().to('cuda')
    # summary(G, (3, 256, 256))
    D = Cycle_Gan_D().to('cuda')
    summary(D, (3, 256, 256))

     (二)train

        训练过程中有一些小细节,为了减小模型振荡,提高训练的稳定性,论文中采用了buffer来暂存G生成的图片,用之前生成的图片来更新判别器。G共包含三种损失(两个方向共6部分),GAN_loss、Cycle_loss、id_loss。其中,GAN_loss就是传统GAN的loss,使得输出图片尽可能真,Cycle_loss是重建的图片与原始图片之间的L1损失,id_loss是为了保证G不去随意改变图片的色调(即便判别器告诉你另外一种色调也服从Domain Y的分布,但为了仅仅改变风格不改变别的因素,因此引入了该损失)。判别器D仍然采用了PatchGAN,训练过程与pix2pix类似。

import itertools
from image_pool import ImagePool
from torch.utils.tensorboard import SummaryWriter
from cyclegan import Cycle_Gan_G, Cycle_Gan_D
import argparse
from mydatasets import CreateDatasets
import os
from torch.utils.data.dataloader import DataLoader
import torch
import torch.optim as optim
import torch.nn as nn
from utils import train_one_epoch, val


def train(opt):
    batch = opt.batch
    data_path = opt.dataPath
    print_every = opt.every
    device = 'cuda' if torch.cuda.is_available() else 'cpu'
    epochs = opt.epoch
    img_size = opt.imgsize

    if not os.path.exists(opt.savePath):
        os.mkdir(opt.savePath)

    # 加载数据集
    train_datasets = CreateDatasets(data_path, img_size, mode='train')
    val_datasets = CreateDatasets(data_path, img_size, mode='test')

    train_loader = DataLoader(dataset=train_datasets, batch_size=batch, shuffle=True, num_workers=opt.numworker,
                              drop_last=True)
    val_loader = DataLoader(dataset=val_datasets, batch_size=batch, shuffle=True, num_workers=opt.numworker,
                            drop_last=True)

    # 实例化网络
    Cycle_G_A = Cycle_Gan_G().to(device)
    Cycle_D_A = Cycle_Gan_D().to(device)

    Cycle_G_B = Cycle_Gan_G().to(device)
    Cycle_D_B = Cycle_Gan_D().to(device)

    # 定义优化器和损失函数
    optim_G = optim.Adam(itertools.chain(Cycle_G_A.parameters(), Cycle_G_B.parameters()), lr=0.0002, betas=(0.5, 0.999))
    optim_D = optim.Adam(itertools.chain(Cycle_D_A.parameters(), Cycle_D_B.parameters()), lr=0.0002, betas=(0.5, 0.999))
    loss = nn.MSELoss()
    l1_loss = nn.L1Loss()
    start_epoch = 0
    A_fake_pool = ImagePool(50)
    B_fake_pool = ImagePool(50)

    # 加载预训练权重
    if opt.weight != '':
        ckpt = torch.load(opt.weight)
        Cycle_G_A.load_state_dict(ckpt['Ga_model'], strict=False)
        Cycle_G_B.load_state_dict(ckpt['Gb_model'], strict=False)
        Cycle_D_A.load_state_dict(ckpt['Da_model'], strict=False)
        Cycle_D_B.load_state_dict(ckpt['Db_model'], strict=False)
        start_epoch = ckpt['epoch'] + 1

    writer = SummaryWriter('train_logs')
    # 开始训练
    for epoch in range(start_epoch, epochs):
        loss_mG, loss_mD = train_one_epoch(Ga=Cycle_G_A, Da=Cycle_D_A, Gb=Cycle_G_B, Db=Cycle_D_B,
                                           train_loader=train_loader,
                                           optim_G=optim_G, optim_D=optim_D, writer=writer, loss=loss, device=device,
                                           plot_every=print_every, epoch=epoch, l1_loss=l1_loss,
                                           A_fake_pool=A_fake_pool, B_fake_pool=B_fake_pool)

        writer.add_scalars(main_tag='train_loss', tag_scalar_dict={
            'loss_G': loss_mG,
            'loss_D': loss_mD
        }, global_step=epoch)

        # 保存模型
        torch.save({
            'Ga_model': Cycle_G_A.state_dict(),
            'Gb_model': Cycle_G_B.state_dict(),
            'Da_model': Cycle_D_A.state_dict(),
            'Db_model': Cycle_D_B.state_dict(),
            'epoch': epoch
        }, './weights/cycle_monent2photo.pth')

        # 验证集
        val(Ga=Cycle_G_A, Da=Cycle_D_A, Gb=Cycle_G_B, Db=Cycle_D_B, val_loader=val_loader, loss=loss, l1_loss=l1_loss,
            device=device, epoch=epoch)



def cfg():
    parse = argparse.ArgumentParser()
    parse.add_argument('--batch', type=int, default=1)
    parse.add_argument('--epoch', type=int, default=100)
    parse.add_argument('--imgsize', type=int, default=256)
    parse.add_argument('--dataPath', type=str, default='../monet2photo', help='data root path')
    parse.add_argument('--weight', type=str, default='', help='load pre train weight')
    parse.add_argument('--savePath', type=str, default='./weights', help='weight save path')
    parse.add_argument('--numworker', type=int, default=4)
    parse.add_argument('--every', type=int, default=20, help='plot train result every * iters')
    opt = parse.parse_args()
    return opt


if __name__ == '__main__':
    opt = cfg()
    print(opt)
    train(opt)
import torchvision
from tqdm import tqdm
import torch
import os


def train_one_epoch(Ga, Da, Gb, Db, train_loader, optim_G, optim_D, writer, loss, device, plot_every, epoch, l1_loss,
                    A_fake_pool, B_fake_pool):
    pd = tqdm(train_loader)
    loss_D, loss_G = 0, 0
    step = 0
    Ga.train()
    Da.train()
    Gb.train()
    Db.train()
    for idx, data in enumerate(pd):
        A_real = data[0].to(device)
        B_real = data[1].to(device)
        # 前向传递
        B_fake = Ga(A_real)  # Ga生成的假B
        A_rec = Gb(B_fake)  # Gb重构回的A
        A_fake = Gb(B_real)  # Gb生成的假A
        B_rec = Ga(A_fake)  # Ga重构回的B

        # 训练G   => G包含六部分损失
        set_required_grad([Da, Db], requires_grad=False)  # 不更新D
        optim_G.zero_grad()
        ls_G = train_G(Da=Da, Db=Db, B_fake=B_fake, loss=loss, A_fake=A_fake, l1_loss=l1_loss,
                       A_rec=A_rec,
                       A_real=A_real, B_rec=B_rec, B_real=B_real, Ga=Ga, Gb=Gb)
        ls_G.backward()
        optim_G.step()

        # 训练D
        set_required_grad([Da, Db], requires_grad=True)
        optim_D.zero_grad()
        A_fake_p = A_fake_pool.query(A_fake)
        B_fake_p = B_fake_pool.query(B_fake)
        ls_D = train_D(Da=Da, Db=Db, B_fake=B_fake_p, B_real=B_real, loss=loss, A_fake=A_fake_p, A_real=A_real)
        ls_D.backward()
        optim_D.step()

        loss_D += ls_D
        loss_G += ls_G

        pd.desc = 'train_{} G_loss: {} D_loss: {}'.format(epoch, ls_G.item(), ls_D.item())

        # 绘制训练结果
        if idx % plot_every == 0:
            writer.add_images(tag='epoch{}_Ga'.format(epoch), img_tensor=0.5 * (torch.cat([A_real, B_fake], 0) + 1),
                              global_step=step)
            writer.add_images(tag='epoch{}_Gb'.format(epoch), img_tensor=0.5 * (torch.cat([B_real, A_fake], 0) + 1),
                              global_step=step)
            step += 1
    mean_lsG = loss_G / len(train_loader)
    mean_lsD = loss_D / len(train_loader)
    return mean_lsG, mean_lsD


@torch.no_grad()
def val(Ga, Da, Gb, Db, val_loader, loss, device, l1_loss, epoch):
    pd = tqdm(val_loader)
    loss_D, loss_G = 0, 0
    Ga.eval()
    Da.eval()
    Gb.eval()
    Db.eval()
    all_loss = 10000
    for idx, item in enumerate(pd):
        A_real_img = item[0].to(device)
        B_real_img = item[1].to(device)

        B_fake_img = Ga(A_real_img)
        A_fake_img = Gb(B_real_img)

        A_rec = Gb(B_fake_img)
        B_rec = Ga(A_fake_img)

        # D的loss
        ls_D = train_D(Da=Da, Db=Db, B_fake=B_fake_img, B_real=B_real_img, loss=loss, A_fake=A_fake_img,
                       A_real=A_real_img)
        # G的loss
        ls_G = train_G(Da=Da, Db=Db, B_fake=B_fake_img, loss=loss, A_fake=A_fake_img, l1_loss=l1_loss,
                       A_rec=A_rec,
                       A_real=A_real_img, B_rec=B_rec, B_real=B_real_img, Ga=Ga, Gb=Gb)

        loss_G += ls_G
        loss_D += ls_D
        pd.desc = 'val_{}: G_loss:{} D_Loss:{}'.format(epoch, ls_G.item(), ls_D.item())

        # 保存最好的结果
        all_ls = ls_G + ls_D
        if all_ls < all_loss:
            all_loss = all_ls
            best_image = torch.cat([A_real_img, B_fake_img, B_real_img, A_fake_img], 0)
    result_img = (best_image + 1) * 0.5
    if not os.path.exists('./results'):
        os.mkdir('./results')

    torchvision.utils.save_image(result_img, './results/val_epoch{}_cycle.jpg'.format(epoch))


def set_required_grad(nets, requires_grad=False):
    if not isinstance(nets, list):
        nets = [nets]
    for net in nets:
        if net is not None:
            for params in net.parameters():
                params.requires_grad = requires_grad


def train_G(Da, Db, B_fake, loss, A_fake, l1_loss, A_rec, A_real, B_rec, B_real, Ga, Gb):
    # GAN loss
    Da_out_fake = Da(B_fake)
    Ga_gan_loss = loss(Da_out_fake, torch.ones(Da_out_fake.size()).cuda())
    Db_out_fake = Db(A_fake)
    Gb_gan_loss = loss(Db_out_fake, torch.ones(Db_out_fake.size()).cuda())

    # Cycle loss
    Cycle_A_loss = l1_loss(A_rec, A_real) * 10
    Cycle_B_loss = l1_loss(B_rec, B_real) * 10

    # identity loss
    Ga_id_out = Ga(B_real)
    Gb_id_out = Gb(A_real)
    Ga_id_loss = l1_loss(Ga_id_out, B_real) * 10 * 0.5
    Gb_id_loss = l1_loss(Gb_id_out, A_real) * 10 * 0.5

    # G的总损失
    ls_G = Ga_gan_loss + Gb_gan_loss + Cycle_A_loss + Cycle_B_loss + Ga_id_loss + Gb_id_loss

    return ls_G


def train_D(Da, Db, B_fake, B_real, loss, A_fake, A_real):
    # Da的loss
    Da_fake_out = Da(B_fake.detach()).squeeze()
    Da_real_out = Da(B_real).squeeze()
    ls_Da1 = loss(Da_fake_out, torch.zeros(Da_fake_out.size()).cuda())
    ls_Da2 = loss(Da_real_out, torch.ones(Da_real_out.size()).cuda())
    ls_Da = (ls_Da1 + ls_Da2) * 0.5
    # Db的loss
    Db_fake_out = Db(A_fake.detach()).squeeze()
    Db_real_out = Db(A_real.detach()).squeeze()
    ls_Db1 = loss(Db_fake_out, torch.zeros(Db_fake_out.size()).cuda())
    ls_Db2 = loss(Db_real_out, torch.ones(Db_real_out.size()).cuda())
    ls_Db = (ls_Db1 + ls_Db2) * 0.5

    # D的总损失
    ls_D = ls_Da + ls_Db
    return ls_D

     (三)test

from cyclegan import Cycle_Gan_G
import torch
import torchvision.transforms as transform
import matplotlib.pyplot as plt
import cv2
from PIL import Image


def test(img_path):
    if img_path.endswith('.png'):
        img = cv2.imread(img_path)
        img = img[:, :, ::-1]
    else:
        img = Image.open(img_path)

    transforms = transform.Compose([
        transform.ToTensor(),
        transform.Resize((256, 256)),
        transform.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
    ])
    img = transforms(img.copy())
    img = img[None].to('cuda')  # [1,3,128,128]

    # 实例化网络
    Gb = Cycle_Gan_G().to('cuda')
    # 加载预训练权重
    ckpt = torch.load('weights/cycle_monent2photo.pth')
    Gb.load_state_dict(ckpt['Gb_model'], strict=False)

    Gb.eval()
    out = Gb(img)[0]
    out = out.permute(1, 2, 0)
    out = (0.5 * (out + 1)).cpu().detach().numpy()
    plt.figure()
    plt.imshow(out)
    plt.show()


if __name__ == '__main__':
    test('123.jpg')

 五、结果

     (一)loss

PyTorch 实现CycleGAN 风格迁移_第4张图片

     (二)训练可视化

        这里我挑选了一部分训练结果和验证结果。

        训练集上monet -> photo

PyTorch 实现CycleGAN 风格迁移_第5张图片PyTorch 实现CycleGAN 风格迁移_第6张图片

        训练集上photo-> monet

PyTorch 实现CycleGAN 风格迁移_第7张图片

PyTorch 实现CycleGAN 风格迁移_第8张图片

         验证集上结果(左边为monet -> photo,右边为photo-> monet )

PyTorch 实现CycleGAN 风格迁移_第9张图片

PyTorch 实现CycleGAN 风格迁移_第10张图片

     (三)测试结果

        下图为photo转monet的结果

PyTorch 实现CycleGAN 风格迁移_第11张图片

PyTorch 实现CycleGAN 风格迁移_第12张图片

 六、完整代码

        数据集:百度网盘 请输入提取码  提取码:s3e3

        代码:百度网盘 请输入提取码    提取码:t0d5

你可能感兴趣的:(GAN,pytorch,深度学习,python,图像处理,人工智能)