pytorch_Realtime_Multi-Person_Pose_Estimation项目学习

提示:该文章仅仅记录自己的学习过程,如有问题,请大家指教。

项目下载地址:GitHub - tensorboy/pytorch_Realtime_Multi-Person_Pose_Estimation

一、环境配置

requirements.txt ——该文件提供了需要的库

1.torch——进入官网  :Start Locally | PyTorchAn open source machine learning framework that accelerates the path from research prototyping to production deployment.https://pytorch.org/get-started/locally/根据自己电脑配置下载符合自己的pytorch

conda install pytorch==1.8.0 torchvision==0.9.0 torchaudio==0.8.0 cudatoolkit=11.1 -c pytorch -c conda-forge

会遇到下载不了的情况——————换源

channels:
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
  - defaults
show_channel_urls: true

pytorch_Realtime_Multi-Person_Pose_Estimation项目学习_第1张图片

 pytorch_Realtime_Multi-Person_Pose_Estimation项目学习_第2张图片

2.pycocotools的安装(仅适用于windows)

通过在清华镜像源中找到适合自己的版本下载下来

镜像地址:Links for pycocotools-windows

在虚拟环境下安装:pip install 文件名 

二、demo文件夹

picture_demo.py  输入图片关键点就会标注出来
web_demo.py  目前未学习

三、train文件夹

1._init_paths.py 用于实现路径的添加

2.train_Vgg19.py的学习(训练VGG19模型)

2.1从lib包中引用相关的模块

from lib.network.rtpose_vgg import get_model, use_vgg
from lib.datasets import coco, transforms, datasets
from lib.config import update_config

2.2Python中的argparse用法总结

Python中的argparse用法总结_Code小学僧的课后笔记-CSDN博客

def cli():
    parser = argparse.ArgumentParser(
        description=__doc__,
        formatter_class=argparse.ArgumentDefaultsHelpFormatter,
    )
    train_cli(parser)
    parser.add_argument('-o', '--output', default=None,
                        help='output file')
    parser.add_argument('--stride-apply', default=1, type=int,
                        help='apply and reset gradients every n batches')
    parser.add_argument('--epochs', default=75, type=int,
                        help='number of epochs to train')
    parser.add_argument('--freeze-base', default=0, type=int,
                        help='number of epochs to train with frozen base')
    parser.add_argument('--pre-lr', type=float, default=1e-4,
                        help='pre learning rate')
    parser.add_argument('--update-batchnorm-runningstatistics',
                        default=False, action='store_true',
                        help='update batch norm running statistics')
    parser.add_argument('--square-edge', default=368, type=int,
                        help='square edge of input images')
    parser.add_argument('--ema', default=1e-3, type=float,
                        help='ema decay constant')
    parser.add_argument('--debug-without-plots', default=False, action='store_true',
                        help='enable debug but dont plot')
    parser.add_argument('--disable-cuda', action='store_true',
                        help='disable CUDA')                        
    parser.add_argument('--model_path', default='./network/weight/', type=str, metavar='DIR',help='path to where the model saved')                         
    args = parser.parse_args()

    # add args.device
    args.device = torch.device('cpu')
    args.pin_memory = False
    if not args.disable_cuda and torch.cuda.is_available():
        args.device = torch.device('cuda')
        args.pin_memory = True
        
    return args

获取模型VGG19

model = get_model('vgg19') 
def get_model(trunk='vgg19'):
    """Creates the whole CPM model
    Args:
        trunk: string, 'vgg19' or 'mobilenet'
    Returns: Module, the defined model
    """
    blocks = {}
    # block0 is the preprocessing stage
    if trunk == 'vgg19':
        block0 = [{'conv1_1': [3, 64, 3, 1, 1]},
                  {'conv1_2': [64, 64, 3, 1, 1]},
                  {'pool1_stage1': [2, 2, 0]},
                  {'conv2_1': [64, 128, 3, 1, 1]},
                  {'conv2_2': [128, 128, 3, 1, 1]},
                  {'pool2_stage1': [2, 2, 0]},
                  {'conv3_1': [128, 256, 3, 1, 1]},
                  {'conv3_2': [256, 256, 3, 1, 1]},
                  {'conv3_3': [256, 256, 3, 1, 1]},
                  {'conv3_4': [256, 256, 3, 1, 1]},
                  {'pool3_stage1': [2, 2, 0]},
                  {'conv4_1': [256, 512, 3, 1, 1]},
                  {'conv4_2': [512, 512, 3, 1, 1]},
                  {'conv4_3_CPM': [512, 256, 3, 1, 1]},
                  {'conv4_4_CPM': [256, 128, 3, 1, 1]}]

    elif trunk == 'mobilenet':
        block0 = [{'conv_bn': [3, 32, 2]},  # out: 3, 32, 184, 184
                  {'conv_dw1': [32, 64, 1]},  # out: 32, 64, 184, 184
                  {'conv_dw2': [64, 128, 2]},  # out: 64, 128, 92, 92
                  {'conv_dw3': [128, 128, 1]},  # out: 128, 256, 92, 92
                  {'conv_dw4': [128, 256, 2]},  # out: 256, 256, 46, 46
                  {'conv4_3_CPM': [256, 256, 1, 3, 1]},
                  {'conv4_4_CPM': [256, 128, 1, 3, 1]}]

    # Stage 1
    blocks['block1_1'] = [{'conv5_1_CPM_L1': [128, 128, 3, 1, 1]},
                          {'conv5_2_CPM_L1': [128, 128, 3, 1, 1]},
                          {'conv5_3_CPM_L1': [128, 128, 3, 1, 1]},
                          {'conv5_4_CPM_L1': [128, 512, 1, 1, 0]},
                          {'conv5_5_CPM_L1': [512, 38, 1, 1, 0]}]

    blocks['block1_2'] = [{'conv5_1_CPM_L2': [128, 128, 3, 1, 1]},
                          {'conv5_2_CPM_L2': [128, 128, 3, 1, 1]},
                          {'conv5_3_CPM_L2': [128, 128, 3, 1, 1]},
                          {'conv5_4_CPM_L2': [128, 512, 1, 1, 0]},
                          {'conv5_5_CPM_L2': [512, 19, 1, 1, 0]}]

    # Stages 2 - 6
    for i in range(2, 7):
        blocks['block%d_1' % i] = [
            {'Mconv1_stage%d_L1' % i: [185, 128, 7, 1, 3]},
            {'Mconv2_stage%d_L1' % i: [128, 128, 7, 1, 3]},
            {'Mconv3_stage%d_L1' % i: [128, 128, 7, 1, 3]},
            {'Mconv4_stage%d_L1' % i: [128, 128, 7, 1, 3]},
            {'Mconv5_stage%d_L1' % i: [128, 128, 7, 1, 3]},
            {'Mconv6_stage%d_L1' % i: [128, 128, 1, 1, 0]},
            {'Mconv7_stage%d_L1' % i: [128, 38, 1, 1, 0]}
        ]

        blocks['block%d_2' % i] = [
            {'Mconv1_stage%d_L2' % i: [185, 128, 7, 1, 3]},
            {'Mconv2_stage%d_L2' % i: [128, 128, 7, 1, 3]},
            {'Mconv3_stage%d_L2' % i: [128, 128, 7, 1, 3]},
            {'Mconv4_stage%d_L2' % i: [128, 128, 7, 1, 3]},
            {'Mconv5_stage%d_L2' % i: [128, 128, 7, 1, 3]},
            {'Mconv6_stage%d_L2' % i: [128, 128, 1, 1, 0]},
            {'Mconv7_stage%d_L2' % i: [128, 19, 1, 1, 0]}
        ]

    models = {}

    if trunk == 'vgg19':
        print("Bulding VGG19")
        models['block0'] = make_vgg19_block(block0)

    for k, v in blocks.items():
        models[k] = make_stages(list(v))

    class rtpose_model(nn.Module):
        def __init__(self, model_dict):
            super(rtpose_model, self).__init__()
            self.model0 = model_dict['block0']
            self.model1_1 = model_dict['block1_1']
            self.model2_1 = model_dict['block2_1']
            self.model3_1 = model_dict['block3_1']
            self.model4_1 = model_dict['block4_1']
            self.model5_1 = model_dict['block5_1']
            self.model6_1 = model_dict['block6_1']

            self.model1_2 = model_dict['block1_2']
            self.model2_2 = model_dict['block2_2']
            self.model3_2 = model_dict['block3_2']
            self.model4_2 = model_dict['block4_2']
            self.model5_2 = model_dict['block5_2']
            self.model6_2 = model_dict['block6_2']

            self._initialize_weights_norm()

        def forward(self, x):

            saved_for_loss = []
            out1 = self.model0(x)

            out1_1 = self.model1_1(out1)
            out1_2 = self.model1_2(out1)
            out2 = torch.cat([out1_1, out1_2, out1], 1)
            saved_for_loss.append(out1_1)
            saved_for_loss.append(out1_2)

            out2_1 = self.model2_1(out2)
            out2_2 = self.model2_2(out2)
            out3 = torch.cat([out2_1, out2_2, out1], 1)
            saved_for_loss.append(out2_1)
            saved_for_loss.append(out2_2)

            out3_1 = self.model3_1(out3)
            out3_2 = self.model3_2(out3)
            out4 = torch.cat([out3_1, out3_2, out1], 1)
            saved_for_loss.append(out3_1)
            saved_for_loss.append(out3_2)

            out4_1 = self.model4_1(out4)
            out4_2 = self.model4_2(out4)
            out5 = torch.cat([out4_1, out4_2, out1], 1)
            saved_for_loss.append(out4_1)
            saved_for_loss.append(out4_2)

            out5_1 = self.model5_1(out5)
            out5_2 = self.model5_2(out5)
            out6 = torch.cat([out5_1, out5_2, out1], 1)
            saved_for_loss.append(out5_1)
            saved_for_loss.append(out5_2)

            out6_1 = self.model6_1(out6)
            out6_2 = self.model6_2(out6)
            saved_for_loss.append(out6_1)
            saved_for_loss.append(out6_2)

            return (out6_1, out6_2), saved_for_loss

        def _initialize_weights_norm(self):

            for m in self.modules():
                if isinstance(m, nn.Conv2d):
                    init.normal_(m.weight, std=0.01)
                    if m.bias is not None:  # mobilenet conv2d doesn't add bias
                        init.constant_(m.bias, 0.0)

            # last layer of these block don't have Relu
            init.normal_(self.model1_1[8].weight, std=0.01)
            init.normal_(self.model1_2[8].weight, std=0.01)

            init.normal_(self.model2_1[12].weight, std=0.01)
            init.normal_(self.model3_1[12].weight, std=0.01)
            init.normal_(self.model4_1[12].weight, std=0.01)
            init.normal_(self.model5_1[12].weight, std=0.01)
            init.normal_(self.model6_1[12].weight, std=0.01)

            init.normal_(self.model2_2[12].weight, std=0.01)
            init.normal_(self.model3_2[12].weight, std=0.01)
            init.normal_(self.model4_2[12].weight, std=0.01)
            init.normal_(self.model5_2[12].weight, std=0.01)
            init.normal_(self.model6_2[12].weight, std=0.01)

    model = rtpose_model(models)
    return model

你可能感兴趣的:(pytorch,深度学习,人工智能)