浅学神经网络

看视频初识神经网络,通俗易懂理解。后续进行神经网络工作原理深入学习。

神经网络是什么?

神经网络是用计算机模拟生物神经系统。基本单位人工神经元。包括三种函数:激活函数、损失函数和优化函数。
浅学神经网络_第1张图片

激活函数

神经网基本模型
浅学神经网络_第2张图片

  • 激活函数是什么

    神经网络中的每个神经元节点接受上一层神经元的输出值作为本神经元的输入值,并将输入值传递给下一层,输入层神经元节点会将输入属性值直接传递给下一层(隐层或输出层)。在多层神经网络中,上层节点的输出和下层节点的输入之间具有一个函数关系,这个函数称为激活函数(又称激励函数)。

  • 为什么引入激活函数
    为了引入非线性变换。如果不用激励函数(其实相当于激励函数是f(x) = x),在这种情况下你每一层节点的输入都是上层输出的线性函数,很容易验证,无论你神经网络有多少层,输出都是输入的线性组合,与没有隐藏层效果相当,这种情况就是最原始的感知机(Perceptron)了,那么网络的逼近能力就相当有限。正因为上面的原因,我们决定引入非线性函数作为激励函数,这样深层神经网络表达能力就更加强大(不再是输入的线性组合,而是几乎可以逼近任意函数)。

  • 激活函数三种常用

  1. sigmoid函数
    在这里插入图片描述
    浅学神经网络_第3张图片sigmoid 是使用范围最广的一类激活函数,具有指数函数形状,它在物理意义上最为接近生物神经元。此外,(0, 1) 的输出还可以被表示作概率,或用于输入的归一化,代表性的如Sigmoid交叉熵损失函数。

然而,sigmoid也有其自身的缺陷,最明显的就是饱和性。从上图可以看到,其两侧导数逐渐趋近于0
  在这里插入图片描述
  具有这种性质的称为软饱和激活函数。具体的,饱和又可分为左饱和与右饱和。与软饱和对应的是硬饱和, 即
  f′(x)=0,当|x|>c,其中c为常数。

sigmoid 的软饱和性,使得深度神经网络在二三十年里一直难以有效的训练,是阻碍神经网络发展的重要原因。具体来说,由于在后向传递过程中,sigmoid向下传导的梯度包含了一个 f′(x) 因子(sigmoid关于输入的导数),因此一旦输入落入饱和区,f′(x) 就会变得接近于0,导致了向底层传递的梯度也变得非常小。此时,网络参数很难得到有效训练。这种现象被称为梯度消失。一般来说, sigmoid 网络在 5 层之内就会产生梯度消失现象

此外,sigmoid函数的输出均大于0,使得输出不是0均值,这称为偏移现象,这会导致后一层的神经元将得到上一层输出的非0均值的信号作为输入。

  1. tanh函数

浅学神经网络_第4张图片
 tanh也是一种非常常见的激活函数。与sigmoid相比,它的输出均值是0,使得其收敛速度要比sigmoid快,减少迭代次数。然而,从途中可以看出,tanh一样具有软饱和性,从而造成梯度消失。

  1. Relu函数

浅学神经网络_第5张图片
浅学神经网络_第6张图片

ReLU的全称是Rectified Linear Units,是一种后来才出现的激活函数。 可以看到,当x<0时,ReLU硬饱和,而当x>0时,则不存在饱和问题。所以,ReLU 能够在x>0时保持梯度不衰减,从而缓解梯度消失问题。这让我们能够直接以监督的方式训练深度神经网络,而无需依赖无监督的逐层预训练。

然而,随着训练的推进,部分输入会落入硬饱和区,导致对应权重无法更新。这种现象被称为“神经元死亡”。与sigmoid类似,ReLU的输出均值也大于0,偏移现象和 神经元死亡会共同影响网络的收敛性。

损失函数

在这里插入图片描述

其中y是我们期望的输出,a为神经元的实际输出(a=σ(Wx+b)。也就是说,当神经元的实际输出与我们的期望输出差距越大,代价就越高。想法非常的好,然而在实际应用中,我们知道参数的修正是与∂C/∂W和∂C/∂b成正比的,而根据

我们发现其中都有σ′(a)这一项。因为sigmoid函数的性质,导致σ′(z)在z取大部分值时会造成饱和现象,从而使得参数的更新速度非常慢,甚至会造成离期望值越远,更新越慢的现象。那么怎么克服这个问题呢?我们想到了交叉熵函数。我们知道,熵的计算公式是 在这里插入图片描述

而在实际操作中,我们并不知道y的分布,只能对y的分布做一个估计,也就是算得的a值, 这样我们就能够得到用a来表示y的交叉熵
在这里插入图片描述
  如果有多个样本,则整个样本的平均交叉熵为
  在这里插入图片描述

其中n表示样本编号,i表示类别编。 如果用于logistic分类,则上式可以简化成
  在这里插入图片描述

与平方损失函数相比,交叉熵函数有个非常好的特质,

在这里插入图片描述

可以看到其中没有了σ′这一项,这样一来也就不会受到饱和性的影响了。当误差大的时候,权重更新就快,当误差小的时候,权重的更新就慢。这是一个很好的性质。

优化函数

  • GD
  • ADAGRAD
  • ADAM
    以后继续 学习 ,未完

你可能感兴趣的:(机器学习初学,神经网络)