点击上方“AI派”,选择“设为星标”
最新分享,第一时间送达!
你知道PyTorch Hub吗?
这个Facebook的深度学习模型库,一问世就引发了巨大关注。
因为它太强了:
ResNet、BERT、GPT、VGG、PGAN、MobileNet等深度学习领域的经典模型,只需输入一行代码,就能一键调用。
不过,人工智能领域,这样的模型库不仅仅只有PyTorch Hub一个,还有其他4个(来自@爱可可-爱生活):
TensorFlow Hub、TensorFlow Models、Model Zoo、Models – IBM Developer
在这些地方,深度学习模型同样能够“拿来就能用”。
官方介绍,PyTorch Hub是一个简易API和工作流程,为复现研究提供了基本构建模块,包含预训练模型库。
PyTorch Hub支持Colab,能与论文代码结合网站Papers With Code集成,用于更广泛的研究。
此外,Facebook还鼓励学者把自己的模型发布到这里来,来让PyTorch Hub越来越强大。
目前,PyTorch Hub有26个模型可以使用,它们分别是:
Deeplabv3-ResNet101、Transformer (NMT)、WaveGlow、ResNext WSL、DCGAN on FashionGen、Progressive Growing of GANs (PGAN)、BERT、GPT、GPT-2、Transformer-XL、U-Net for brain MRI、SSD、Tacotron 2、RoBERTa、AlexNet、Densenet、FCN-ResNet101、GoogLeNet、Inception_v3、MobileNet v2、ResNet、ResNext、ShuffleNet v2、SqueezeNet、vgg-nets、Wide ResNet
PyTorch Hub:
GitHub地址:
相关报道:
PyTorch Hub发布!一行代码调用最潮模型,图灵奖得主强推
官方介绍,TensorFlow Hub是一个库,用于发布、发现和使用机器学习模型中可重复利用的部分。
模块是一个独立的 TensorFlow 图部分,其中包含权重和资源,可以在一个进程中供不同任务重复使用(称为迁移学习)。
从而实现使用较小的数据集训练模型;改善泛化效果,以及加快训练速度。
目前,TensorFlow Hub一共有20个API、75个用于文本嵌入的模块、71个用于图像特征向量模块,以及2个用于视频分类的模块等等。
模块基本上全来自谷歌官方,来自谷歌AI的有大多数,还有一些来自DeepMind。
TensorFlow Hub支持使用语言、网络、提供者、数据集以及类型来对模块进行精确筛查。其中有8个模块支持中文。
TensorFlow Hub:
GitHub地址:
一个GitHub上的存储库,包含了许多在TensorFlow中实现的模型,一共分为两类:官方模型和研究模型。
官方模型,是使用TensorFlow的高级API的示例模型的集合。
它们能够得到良好的维护、测试,并与最新的稳定的TensorFlow API保持同步。项目创建者表示,推荐新的TensorFlow用户从这里开始,目前可用的模型有:
BERT、Boosted Trees、MNIST、ResNet、Transformer、Wide_deep
研究模型,是研究人员在TensorFlow中实现的大量模型集合。它们在发布分支中不受官方支持或不可用;模型维护等方面取决于各个研究人员。目前有51个模型,覆盖计算机视觉、自然语言处理领域等等。
TensorFlow Models:
https://github.com/tensorflow/models/
这个平台,由新加坡名为Jing Yu Koh本科生牵头搭建。与上述的几个平台不同,这个平台上提供预训练模型,不仅仅只是完全针对于Pytorch或者TensorFlow。
在每个模型上,会标注出这个模型在GitHub的标星数量,模型适用的框架、领域以及模型的使用条件/用途。
目前已经收集了数百个模型,覆盖的领域包括计算机视觉、自然语言处理、强化学习、无监督学习、音频和语音、生成模型。
涉及到的框架有:TensorFlow、Caffe、Caffe2、PyTorch、MXNet、Keras、Chainer。
Model Zoo:
IBM开放的预训练深度模型库,目前一共有32个模型,分为可部署和可训练模型两类,涉及18个领域,分别是:
声音分类、音频特征提取、音频建模、面部识别、图像分类、图像特征提取、图像到图像的翻译或转换、图像到文本的翻译、语言建模、命名实体识别、自然语言处理、图片中的目标检测、安全、文本分类、文本特征提取、文本到图像的翻译、时间序列预测、视频分类
Models – IBM Developer
https://developer.ibm.com/exchanges/models/all/
最后,小小总结一下。
上文提到的这些深度模型库中,有一些是专用的,比如PyTorch Hub、TensorFlow Hub和TensorFlow Models,只能够在PyTorch框架或者TensorFlow中使用,但其使用起来非常方便,能够快速调用部署。
其他的,比如Model Zoo则是由个人开发者收集,覆盖面很广泛,模型也很多,但相对来说,部署起来并没有直接利用PyTorch Hub或TensorFlow Hub方便。
大家可以根据自己的需求选择相应深度学习库。
利用好了,可以事半功倍~
/ 每日赠书专区 /
为了回馈一直以来支持我们的读者,“每日赠书专区”会每天从留言支持我们的读者中选择一名最脸熟的读者来赠予实体书籍(包邮),当前通过这种方式我们已赠送出 20+ 本书籍。
脸熟的评判标准是根据通过留言的次数来决定的
留言时需要按照今日留言主题来用心留言,否则不计入总数
每日赠书专区会出现在AI派当天发布文章的头条或次条的文章末尾
如果不理解头条/次条的含义的读者可看下面的图。
今天我们的每日赠书专区出现在“次条”的位置上,书籍为《神经网络与深度学习实战》。
本书简介:
这本书颇有特色,主要体现在书中循序渐进、由浅入深地将一个难度颇大的技术话题分解成多个难度比较小的知识点,然后带领读者逐个击破,最后一举拿下深度学习这块非常难啃的骨头。这本书在高门槛前建立了多级容易跨越的台阶,让读者的学习曲线比较平滑,极大地降低了学习难度,推荐给有志于从事人工智能的工程师和爱好者研读。
?↑↑点击上方可购买
恭喜上期通过留言成功混脸熟的读者(5位):彳亍、羽/jane/seifer/海洋/正秀,赠送一本《推荐系统开发实战》
请中奖同学联系小编:wanglaoshi201907
/ 今日留言主题 /
你通常都使用神经网络来完成什么工作或者任务呢?
近期专栏推荐
1. 算法原理稳如狗,工程落地慌得很!AI炼丹炉实践指南来啦~
2. 从0到1,数据分析师修炼之路
3. "王老湿,我。。我想学那个。。爬虫。可以嘛"
4. 想学机器学习吗?带坑的那种
点下「在看」,给文章盖个戳吧!?