迁移学习——猫狗分类(PyTorch:迁移 ResNet50 方法)

迁移学习——猫狗分类(PyTorch:迁移 ResNet50 方法)

    • 3.3 迁移 ResNet50
      • 3.3.1 通过代码自动下载模型并直接调用
      • 3.3.2 对当前迁移过来的模型进行全连接层的调整
      • 3.3.3 模型训练及结果
      • 3.3.4 举例说明

前文关于迁移学习的入门及自定义模型的方法看这里: 迁移学习——猫狗分类(PyTorch:自定义 VGGNet 方法)。
参考了唐进民的《深度学习之PyTorch实战计算机视觉》7 部分,及 这里的代码。

另外一个迁移学习的方法:迁移学习——猫狗分类(PyTorch:迁移 VGG16 方法)

3.3 迁移 ResNet50

3.3.1 通过代码自动下载模型并直接调用

和迁移VGG16 模型类似,在代码中使用 resnet50 对 vgg16 进行替换就完成了对应模型的迁移:

import torch
import torchvision
from torchvision import datasets, models, transforms
import os
from torch.autograd import Variable
import matplotlib.pyplot as plt 
import time
model_path = 'transferResNet50/model_name.pth'
model_params_path = 'transferResNet50/params_name.pth'

transform = transforms.Compose(
    [transforms.CenterCrop(224),
    transforms.ToTensor(),
    transforms.Normalize([0.5,0.5,0.5],[0.5,0.5,0.5])
    ]
)


data_dir = "C:/Users/xinyu/Desktop/data/DogsVSCats/"

data_transform = {
    x:transforms.Compose(
        [
            transforms.Scale([224,224]),    #Scale类将原始图片的大小统一缩放至64×64
            transforms.ToTensor(),
            transforms.Normalize(
                mean=[0.5,0.5,0.5],
                std=[0.5,0.5,0.5]
            )
        ]
    )
    for x in ["train","valid"]
}


image_datasets = {
    x:datasets.ImageFolder(
        root=os.path.join(data_dir,x),  #将输入参数中的两个名字拼接成一个完整的文件路径
        transform=data_transform[x]
    )
    for x in ["train","valid"]
}


dataloader = {  
    #注意:标签0/1自动根据子目录顺序以及目录名生成
    #如:{'cat': 0, 'dog': 1} #{'狗dog': 0, '猫cat': 1}
    #如:['cat', 'dog']  #['狗dog', '猫cat']
    x:torch.utils.data.DataLoader(
        dataset=image_datasets[x],
        batch_size=16,
        shuffle=True
    )
    for x in ["train","valid"]
}


X_example, y_example = next(iter(dataloader["train"]))
example_classes = image_datasets["train"].classes    #['cat', 'dog']  #['狗dog', '猫cat']
index_classes = image_datasets["train"].class_to_idx #{'cat': 0, 'dog': 1} #{'狗dog': 0, '猫cat': 1}


Use_gpu = torch.cuda.is_available()
model = models.resnet50(pretrained=True)
print(model)

结果如下:

ResNet(
  (conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
  (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (relu): ReLU(inplace=True)
  (maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
  (layer1): Sequential(
    (0): Bottleneck(
      (conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (downsample): Sequential(
        (0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (1): Bottleneck(
      (conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
    )
    (2): Bottleneck(
      (conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
    )
  )
  (layer2): Sequential(
    (0): Bottleneck(
      (conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (downsample): Sequential(
        (0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
        (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (1): Bottleneck(
      (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
    )
    (2): Bottleneck(
      (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
    )
    (3): Bottleneck(
      (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
    )
  )
  (layer3): Sequential(
    (0): Bottleneck(
      (conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (downsample): Sequential(
        (0): Conv2d(512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False)
        (1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (1): Bottleneck(
      (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
    )
    (2): Bottleneck(
      (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
    )
    (3): Bottleneck(
      (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
    )
    (4): Bottleneck(
      (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
    )
    (5): Bottleneck(
      (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
    )
  )
  (layer4): Sequential(
    (0): Bottleneck(
      (conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (downsample): Sequential(
        (0): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False)
        (1): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (1): Bottleneck(
      (conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
    )
    (2): Bottleneck(
      (conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
    )
  )
  (avgpool): AdaptiveAvgPool2d(output_size=(1, 1))
  (fc): Linear(in_features=2048, out_features=1000, bias=True)
)

3.3.2 对当前迁移过来的模型进行全连接层的调整

for param in model.parameters():
    param.requires_grad = False

'''重写model的classifier属性,重新设计分类器的结构'''
model.fc = torch.nn.Linear(2048,2) 

print(model)

更新后的 model 与 3.3.1 中的结果差别就是输出特征由1000变为了2:

'''3.3.1 中 model 的最后两行'''
  (fc): Linear(in_features=2048, out_features=1000, bias=True)
)

'''3.3.2 中 model 的最后两行'''
  (fc): Linear(in_features=2048, out_features=2, bias=True)
)

3.3.3 模型训练及结果

if Use_gpu:
    model = model.cuda()

loss_f = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.fc.parameters(),lr=0.00001)


has_been_trained = os.path.isfile(model_path)
if has_been_trained:
    epoch_n = 0
else:
    epoch_n = 1
time_open = time.time()
for epoch in range(epoch_n):
    print("Epoch {}/{}".format(epoch,epoch_n -1))
    print("-"*10)

    for phase in ["train","valid"]:
        if phase == "train":
            print("Training...")
            model.train(True)   #model.train(),启用 BatchNormalization 和 Dropout
        else:
            print("Validing...")
            model.train(False)  #model.eval(),不启用 BatchNormalization 和 Dropout
        
        running_loss = 0.0
        running_corrects = 0
        #cxq = 1
        for batch, data in enumerate(dataloader[phase],1):
            X, y = data
            #print("$$$$$$",cxq)
            #cxq+=1
            if Use_gpu:
                X, y = Variable(X.cuda()), Variable(y.cuda())
            else:
                X, y = Variable(X), Variable(y)
            y_pred = model(X)

            _, pred = torch.max(y_pred.data,1)

            optimizer.zero_grad()

            loss = loss_f(y_pred,y)

            if phase == "train":
                loss.backward()
                optimizer.step()
            
            running_loss += loss.item()
            running_corrects += torch.sum(pred == y.data)

            if batch%500 == 0 and phase == "train":
                print("Batch {}, Train Loss:{:.4f},Train ACC:{:.4f}%".format(
                        batch, running_loss/batch, 100.0*running_corrects/(16*batch)
                        )
                )

        epoch_loss = running_loss*16/len(image_datasets[phase])
        epoch_acc = 100.0 * running_corrects/len(image_datasets[phase])

        print("{} Loss:{:.4f} Acc:{:.4f}%".format(phase,epoch_loss,epoch_acc))

time_end = time.time() - time_open
print("程序运行时间:{}分钟...".format(int(time_end/60)))
Epoch 0/1
----------
Training...
Batch 500, Train Loss:0.2708,Train ACC:94.7375%
Batch 1000, Train Loss:0.2441,Train ACC:95.3000%
train Loss:0.2352 Acc:95.4050%
Validing...
valid Loss:0.1618 Acc:97.4200%
Epoch 1/1
----------
Training...
Batch 500, Train Loss:0.1815,Train ACC:95.8500%
Batch 1000, Train Loss:0.1741,Train ACC:95.8250%
train Loss:0.1725 Acc:95.7650%
Validing...
valid Loss:0.1259 Acc:97.4000%
程序运行时间:72分钟...

3.3.4 举例说明

X_example, Y_example = next(iter(dataloader['train']))
#print('X_example个数{}'.format(len(X_example)))   #X_example个数16 torch.Size([16, 3, 64, 64])
#print('Y_example个数{}'.format(len(Y_example)))   #Y_example个数16 torch.Size([16]

#X, y = data #torch.Size([16, 3, 64, 64]) torch.Size([16]
if Use_gpu:
    X_example, Y_example = Variable(X_example.cuda()), Variable(Y_example.cuda())
else:
    X_example, Y_example = Variable(X_example), Variable(Y_example)

y_pred = model(X_example)

index_classes = image_datasets['train'].class_to_idx   # 显示类别对应的独热编码
#print(index_classes)     #{'cat': 0, 'dog': 1}

example_classes = image_datasets['train'].classes     # 将原始图像的类别保存起来
#print(example_classes)       #['cat', 'dog']

img = torchvision.utils.make_grid(X_example)
img = img.cpu().numpy().transpose([1,2,0])
print("实际:",[example_classes[i] for i in Y_example])
#['cat', 'cat', 'cat', 'cat', 'dog', 'cat', 'cat', 'dog', 'cat', 'cat', 'dog', 'dog', 'cat', 'dog', 'dog', 'cat']
_, y_pred = torch.max(y_pred,1)
print("预测:",[example_classes[i] for i in y_pred])

plt.imshow(img)
plt.show()
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
实际: ['cat', 'dog', 'dog', 'cat', 'cat', 'dog', 'cat', 'cat', 'dog', 'dog', 'dog', 'cat', 'cat', 'dog', 'cat', 'dog']
预测: ['cat', 'dog', 'dog', 'cat', 'cat', 'dog', 'cat', 'cat', 'dog', 'dog', 'dog', 'cat', 'cat', 'dog', 'cat', 'dog']

迁移学习——猫狗分类(PyTorch:迁移 ResNet50 方法)_第1张图片

你可能感兴趣的:(人工智能实例,pytorch,深度学习,神经网络,计算机视觉,迁移学习)