聚类算法分析总结

一、什么是聚类?

聚类(Clustering):聚类是一个人们日常生活的常见行为,即所谓物以类聚,人以群分,核心的思想也就是聚类。人们总是不断地改进下意识中的聚类模式来学习如何区分各个事物和人。同时,聚类分析已经广泛的应用在许多应用中,包括模式识别,数据分析,图像处理以及市场研究。通过聚类,人们能意识到密集和稀疏的区域,发现全局的分布模式,以及数据属性之间的有趣的相互关系。简单来说就是将给定的数据集合划分为多个类或簇,目标是同一簇中的对象具有较高的相似,不同簇中的对象具有较高的相异性。同时聚类算法属于无监督的学习算法。

 二、常见的聚类算法

基于划分聚类算法(partitionclustering)

k-means

是一种典型的划分聚类算法,它用一个聚类的中心来代表一个簇,即在迭代过程中选择的聚点不一定是聚类中的一个点,该算法只能处理数值型数据

k-modes

K-Means算法的扩展,采用简单匹配方法来度量分类型数据的相似度

k-prototypes

结合了K-MeansK-Modes两种算法,能够处理混合型数据

k-medoids

在迭代过程中选择簇中的某点作为聚点,PAM是典型的k-medoids算法

CLARA

CLARA算法在PAM的基础上采用了抽样技术,能够处理大规模数据

CLARANS

CLARANS算法融合了PAMCLARA两者的优点,是第一个用于空间数据库的聚类算法

Focused CLARAN

采用了空间索引技术提高了CLARANS算法的效率

PCM

模糊集合理论引入聚类分析中并提出了PCM模糊聚类算法


基于层次聚类算法:

CURE

采用抽样技术先对数据集D随机抽取样本,再采用分区技术对样本进行分区,然后对每个分区局部聚类,最后对局部聚类进行全局聚类

ROCK

也采用了随机抽样技术,该算法在计算两个对象的相似度时,同时考虑了周围对象的影响

CHEMALOEN(变色龙算法):

首先由数据集构造成一个K-最近邻图Gk ,再通过一个图的划分算法将图Gk划分成大量的子图,每个子图代表一个初始子簇,最后用一个凝聚的层次聚类算法反复合并子簇,找到真正的结果簇

SBAC

SBAC算法则在计算对象间相似度时,考虑了属性特征对于体现对象本质的重要程度,对于更能体现对象本质的属性赋予较高的权值

BIRCH

BIRCH算法利用树结构对数据集进行处理,叶结点存储一个聚类,用中心和半径表示,顺序处理每一个对象,并把它划分到距离最近的结点,该算法也可以作为其他聚类算法的预处理过程

BUBBLE

BUBBLE算法则把BIRCH算法的中心和半径概念推广到普通的距离空间

BUBBLE-FM

BUBBLE-FM算法通过减少距离的计算次数,提高了BUBBLE算法的效率


基于密度聚类算法:

DBSCAN

DBSCAN算法是一种典型的基于密度的聚类算法,该算法采用空间索引技术来搜索对象的邻域,引入了核心对象密度可达等概念,从核心对象出发,把所有密度可达的对象组成一个簇

GDBSCAN

算法通过泛化DBSCAN算法中邻域的概念,以适应空间对象的特点

DBLASD

OPTICS

OPTICS算法结合了聚类的自动性和交互性,先生成聚类的次序,可以对不同的聚类设置不同的参数,来得到用户满意的结果

FDC

FDC算法通过构造k-d tree把整个数据空间划分成若干个矩形空间,当空间维数较少时可以大大提高DBSCAN的效率


基于网格的聚类算法:

STING

利用网格单元保存数据统计信息,从而实现多分辨率的聚类

WaveCluster

在聚类分析中引入了小波变换的原理,主要应用于信号处理领域。(备注:小波算法在信号处理,图形图像,加密解密等领域有重要应用,是一种比较高深和牛逼的东西)

CLIQUE

是一种结合了网格和密度的聚类算法

OPTIGRID


基于神经网络的聚类算法:

自组织神经网络SOM

该方法的基本思想是--由外界输入不同的样本到人工的自组织映射网络中,一开始时,输入样本引起输出兴奋细胞的位置各不相同,但自组织后会形成一些细胞群,它们分别代表了输入样本,反映了输入样本的特征


基于统计学的聚类算法:

COBWeb

COBWeb是一个通用的概念聚类方法,它用分类树的形式表现层次聚类

CLASSIT

AutoClass

是以概率混合模型为基础,利用属性的概率分布来描述聚类,该方法能够处理混合型的数据,但要求各属性相互独立


几种常用的聚类算法从可伸缩性、适合的数据类型、高维性(处理高维数据的能力)、异常数据的抗干扰度、聚类形状和算法效率6个方面进行了综合性能评价,评价结果如表1所示:

算法名称

可伸缩性

适合的数据类型

高维性

异常数据的抗干扰性

聚类形状

算法效率

WaveCluster

很高

数值型

很高

较高

任意形状

很高

ROCK 

很高 

混合型 

很高

很高 

任意形状

一般

BIRCH

较高 

数值型 

较低 

较低 

球形 

很高

CURE 

较高 

数值型 

一般 

很高 

任意形状 

较高

K-Prototypes 

一般 

混合型 

较低 

较低 

任意形状 

一般

DENCLUE 

较低 

数值型 

较高 

一般 

任意形状 

较高

OptiGrid 

一般 

数值型 

较高 

一般 

任意形状 

一般

CLIQUE 

较高 

数值型 

较高 

较高 

任意形状 

较低

DBSCAN 

一般 

数值型 

较低 

较高 

任意形状 

一般

CLARANS 

较低 

数值型 

较低  

较高 

球形  

较低

 三、怎么选择聚类算法

对于一个聚类问题,要挑选最适合最高效的算法必须对要解决的聚类问题本身进行剖析,下面我们就从几个侧面分析一下聚类问题的需求。
聚类结果是排他的还是可重叠的
为了很好理解这个问题,我们以一个例子进行分析,假设你的聚类问题需要得到二个簇:“喜欢詹姆斯卡梅隆电影的用户”和“不喜欢詹姆斯卡梅隆的用户”,这其实是一个排他的聚类问题,对于一个用户,他要么属于“喜欢”的簇,要么属于不喜欢的簇。但如果你的聚类问题是“喜欢詹姆斯卡梅隆电影的用户”和“喜欢里奥纳多电影的用户”,那么这个聚类问题就是一个可重叠的问题,一个用户他可以既喜欢詹姆斯卡梅隆又喜欢里奥纳多。
所以这个问题的核心是,对于一个元素,他是否可以属于聚类结果中的多个簇中,如果是,则是一个可重叠的聚类问题,如果否,那么是一个排他的聚类问题。


基于层次还是基于划分
其实大部分人想到的聚类问题都是“划分”问题,就是拿到一组对象,按照一定的原则将它们分成不同的组,这是典型的划分聚类问题。但除了基于划分的聚类,还有一种在日常生活中也很常见的类型,就是基于层次的聚类问题,它的聚类结果是将这些对象分等级,在顶层将对象进行大致的分组,随后每一组再被进一步的细分,也许所有路径最终都要到达一个单独实例,这是一种“自顶向下”的层次聚类解决方法,对应的,也有“自底向上”的。其实可以简单的理解,“自顶向下”就是一步步的细化分组,而“自底向上”就是一步步的归并分组。


簇数目固定的还是无限制的聚类
这个属性很好理解,就是你的聚类问题是在执行聚类算法前已经确定聚类的结果应该得到多少簇,还是根据数据本身的特征,由聚类算法选择合适的簇的数目。


基于距离还是基于概率分布模型
在本系列的第二篇介绍协同过滤的文章中,我们已经详细介绍了相似性和距离的概念。基于距离的聚类问题应该很好理解,就是将距离近的相似的对象聚在一起。相比起来,基于概率分布模型的,可能不太好理解,那么下面给个简单的例子。
一个概率分布模型可以理解是在 N 维空间的一组点的分布,而它们的分布往往符合一定的特征,比如组成一个特定的形状。基于概率分布模型的聚类问题,就是在一组对象中,找到能符合特定分布模型的点的集合,他们不一定是距离最近的或者最相似的,而是能完美的呈现出概率分布模型所描述的模型。
下面图 1 给出了一个例子,对同样一组点集,应用不同的聚类策略,得到完全不同的聚类结果。左侧给出的结果是基于距离的,核心的原则就是将距离近的点聚在一起,右侧给出的基于概率分布模型的聚类结果,这里采用的概率分布模型是一定弧度的椭圆。图中专门标出了两个红色的点,这两点的距离很近,在基于距离的聚类中,将他们聚在一个类中,但基于概率分布模型的聚类则将它们分在不同的类中,只是为了满足特定的概率分布模型(当然这里我特意举了一个比较极端的例子)。所以我们可以看出,在基于概率分布模型的聚类方法里,核心是模型的定义,不同的模型可能导致完全不同的聚类结果。


图 1 基于距离和基于概率分布模型的聚类问题

 


你可能感兴趣的:(算法,聚类)