Handler Looper Message原理浅析

Handler Looper MessageQueue 原理浅析

说到Andorid线程间通信最常见的就是Handler,Handler的原理是个大厂面试必问,可见其重要程度。本文在这里从源码角度浅析一下Handler,Looper和MessageQueue

1.从Looper开始

首先我们知道,Looper从字面理解就是轮子的意思。

Looper的源码很少,区区不到300行且大半都是注释。我们直接上代码:

private Looper(boolean quitAllowed) {
    mQueue = new MessageQueue(quitAllowed);
    mThread = Thread.currentThread();
}


可以看到Looper的构造方法里,new了一个MessageQueue,并且保存了当前的线程信息。

public static void prepare() {
    prepare(true);
}

private static void prepare(boolean quitAllowed) {
    if (sThreadLocal.get() != null) {
        throw new RuntimeException("Only one Looper may be created per thread");
    }
    sThreadLocal.set(new Looper(quitAllowed));
}

...

//在ThreadLocal中的get方法

public T get() {
    Thread t = Thread.currentThread();
    ThreadLocalMap map = getMap(t);
    if (map != null) {
        ThreadLocalMap.Entry e = map.getEntry(this);
        if (e != null)
            return (T)e.value;
    }
    return setInitialValue();
}


prepare方法在调用时,首先去ThreadLocal中,以该线程为key,取该Looper的信息。如果有的话则抛出异常。证明每个线程只允许有一个Looper存在。

如果没有从ThreadLocal中取出,则会将该new一个新的Looper存入ThreadLocal中,并且该Looper与当前线程绑定。

prepare方法很简洁,接下来让我们看看Looper循环的主方法:Looper.loop():

 public static void loop() {
    final Looper me = myLooper();
    if (me == null) {
        throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
    }
    final MessageQueue queue = me.mQueue;
    
    ...
    
    for (;;) {
        Message msg = queue.next(); // might block
        if (msg == null) {
            // No message indicates that the message queue is quitting.
            return;
        }

        ...

        try {
            msg.target.dispatchMessage(msg);
        } finally {
            if (traceTag != 0) {
                Trace.traceEnd(traceTag);
            }
        }

        ...

        msg.recycleUnchecked();
    }
}


可以看到首先这里有个死循环,防止程序运行结束终止退出。在循环入口会从MessageQueue中取出一条消息,就是queue.next()方法。

如果成功取到消息,则会调用msg.target.dispatchMessage(msg)。

这里的msg.target就是handler,稍后会有该部分的源码。

好了,以上就是Looper的主要源码,代码量十分少,很容易理解。

接下来要看看MessageQueue

2.MessageQueue

刚刚我们看到Looper的loop()方法调用了queue.next(),该段代码起到阻塞作用。所以我们从MessageQueue的next()方法开始看起。

Message next() {
    // Return here if the message loop has already quit and been disposed.
    // This can happen if the application tries to restart a looper after quit
    // which is not supported.
    final long ptr = mPtr;
    if (ptr == 0) {
        return null;
    }

    int pendingIdleHandlerCount = -1; // -1 only during first iteration
    int nextPollTimeoutMillis = 0;
    for (;;) {
    
        ...
        
        synchronized (this) {
            // Try to retrieve the next message.  Return if found.
            final long now = SystemClock.uptimeMillis();
            Message prevMsg = null;
            Message msg = mMessages;
            if (msg != null && msg.target == null) {
                // Stalled by a barrier.  Find the next asynchronous message in the queue.
                do {
                    prevMsg = msg;
                    msg = msg.next;
                } while (msg != null && !msg.isAsynchronous());
            }
            
            //重点在这里
            if (msg != null) {
                if (now < msg.when) {
                    // Next message is not ready.  Set a timeout to wake up when it is ready.
                    nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
                } else {
                    // Got a message.
                    mBlocked = false;
                    if (prevMsg != null) {
                        prevMsg.next = msg.next;
                    } else {
                        mMessages = msg.next;
                    }
                    msg.next = null;
                    if (DEBUG) Log.v(TAG, "Returning message: " + msg);
                    msg.markInUse();
                    return msg;
                }
            } else {
                // No more messages.
                nextPollTimeoutMillis = -1;
            }

           ...
        }

       ...
    }
}


这段代码信息量比较大,不过拆分来看,我们可以确定MessageQueue.next()方法调用的恰恰是Message的next变量赋值,Message是一个单链表结构,其中next属性指向下一个Message的地址。

由此得知,当mMessages有值的时候,Looper才会调用到msg.target.dispatchMessage()。

那么什么时候对mMessages进行赋值呢?

答案就在下一个非常重要的方法里:enqueueMessage()

boolean enqueueMessage(Message msg, long when) {
    
    ...

    synchronized (this) {
    
       ...

        msg.markInUse();
        msg.when = when;
        Message p = mMessages;
        boolean needWake;
        //重点在这里
        if (p == null || when == 0 || when < p.when) {
            // New head, wake up the event queue if blocked.
            msg.next = p;
            mMessages = msg;
            needWake = mBlocked;
        } else {
            // Inserted within the middle of the queue.  Usually we don't have to wake
            // up the event queue unless there is a barrier at the head of the queue
            // and the message is the earliest asynchronous message in the queue.
            needWake = mBlocked && p.target == null && msg.isAsynchronous();
            Message prev;
            for (;;) {
                prev = p;
                p = p.next;
                if (p == null || when < p.when) {
                    break;
                }
                if (needWake && p.isAsynchronous()) {
                    needWake = false;
                }
            }
            msg.next = p; // invariant: p == prev.next
            prev.next = msg;
        }

        // We can assume mPtr != 0 because mQuitting is false.
        if (needWake) {
            nativeWake(mPtr);
        }
    }
    return true;
}


Message由enqueueMessage()方法传入,在其内部对mMessages进行赋值。进而转入next()方法跳出循环,并通知Looper()调用msg.target.dispatchMessage()。

多说一嘴,大家可能对这里面这个msg.when参数比较好奇,这个when参数就是我们再调用Handler.sendMessageDelay()方法时,传入的delay时长。具体时间循环计算方法可见next(),这里不做过多解释。

貌似整体流程清晰了,谁调用这个MessageQueue的enqueueMessage方法,谁就能将一条Message发送给Looper,进而发送给Handler的dispatch()方法。

3.Handler

答案当然是Handler调用的MessageQueue的enqueueMessage()方法。

 public final boolean sendMessageDelayed(Message msg, long delayMillis)
{
    if (delayMillis < 0) {
        delayMillis = 0;
    }
    return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
}


这段代码仅仅是举个例子,所有的Handler的post方法以及sendMessage方法,最终都会调用到sendMessageAtTime()。

接下来看看sendMessageAtTime():

 public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
    MessageQueue queue = mQueue;
    if (queue == null) {
        RuntimeException e = new RuntimeException(
                this + " sendMessageAtTime() called with no mQueue");
        Log.w("Looper", e.getMessage(), e);
        return false;
    }
    return enqueueMessage(queue, msg, uptimeMillis);
}


sendeMessageAtTime()最终会调用Handler的enqueueMessage()。

结果可想而知,Hanlder的enqueueMessage()必然会调用到MessageQueue的enqueueMessage()方法:

private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
    msg.target = this;
    if (mAsynchronous) {
        msg.setAsynchronous(true);
    }
    return queue.enqueueMessage(msg, uptimeMillis);
}


果然,最后我们看看Handler的dispathMessage()方法:

 public void dispatchMessage(Message msg) {
    if (msg.callback != null) {
        handleCallback(msg);
    } else {
        if (mCallback != null) {
            if (mCallback.handleMessage(msg)) {
                return;
            }
        }
        handleMessage(msg);
    }
}


整个一条闭环流程清晰可见,最终msg通过了dispatchMessage()的分发,来到了我们常见的hanldeMessage()里面。

最后为了方便大家理解,我用一张图来演示一下整个调用流程:

Handler Looper Message原理浅析_第1张图片

你可能感兴趣的:(android,移动开发,面试,Handler,Framework)