【机器学习】线性回归源码(python)

线性回归法的详细介绍请参考前面的博文:线性回归推导和sklearn实现

接下来的代码为线性回归实现的细节源码以及结果显示有比较详细的注释:

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_regression

from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error

class l1_regularization():
    def __init__(self, alpha):
        self.alpha = alpha
    
    #l1正则部分求和
    def __call__(self, w):
        loss = np.sum(np.fabs(w))
        return self.alpha * loss
    
    #l1的梯度
    def grad(self, w):
        return self.alpha * np.sign(w)
    
class l2_regularization():
    
    def __init__(self, alpha):
        self.alpha =alpha
    #l2正则部分求和    
    def __call__(self, w):
        loss =  w.T.dot(w)
        return self.alpha * 0.5 * float(loss)
    
    #l2的梯度
    def grad(self, w):
        return self.alpha * w
    
class LinearRegression():
    """
    Parameters:
    -----------
    n_iterations: int
        梯度下降的轮数
    learning_rate: float
        梯度下降学习率
    regularization: l1_regularization or l2_regularization or None
        正则化
    gradient: Bool
        是否采用梯度下降法或正规方程法。
        若使用了正则化,暂只支持梯度下降
    """
    def __init__(self, n_iterations=3000, learning_rate=0.00005, regularization=None, gradient=True ):
        self.n_iterations = n_iterations
        self.learning_rate = learning_rate
        self.gradient = gradient
        if regularization == None:
            self.regularization = lambda x: 0
            self.regularization.grad = lambda x: 0
        else:
            self.regularization = regularization
    
    # X为 (m x n), w 为(n x 1), y为(m x 1)在权重初始化的时候把b=0加到了w里边所以变成((n+1) x 1)
    #  在数据x生成的时候相应的加了值为1的一列到X中变成(m x (n+1)),最后的y不变。
    def initialize_weights(self, n_features):
        limit = np.sqrt(1/n_features)
        w = np.random.uniform(-limit, limit, (n_features, 1))
        b = 0
        self.w = np.insert(w, 0, b, axis=0) #(目标向量,插入位置,插入的数值,插入的维度)
    
    def fit(self, X, y):
        m_sample, n_features = X.shape
        self.initialize_weights(n_features)
        X = np.insert(X, 0, 1,axis=1)
        y = np.reshape(y, (m_sample, 1))
        self.training_error = []
        if self.gradient == True:
            # 梯度下降求w
            for i in range(self.n_iterations):
                y_pred = X.dot(self.w)
                #计算loss
                loss = np.mean(0.5 * (y - y_pred) ** 2) + self.regularization(self.w)
                self.training_error.append(loss)
                # X.T.dot(y_pred - y),计算梯度
                w_grad = X.T.dot(y_pred - y) + self.regularization.grad(self.w)
                self.w = self.w - w_grad * self.learning_rate
        else:
            # 正常解方程求出的w
            X = np.matrix(X)
            y = np.matrix(y)
            XTX = X.T.dot(X)
            XTXIXT = XTX.I.dot(XT)
            self.w = XTXIXT.dot(y)
            
    def predict(self, X):
        X = np.insert(X, 0, 1, axis=1)
        y_pred = X.dot(self.w)
        return y_pred
    
if __name__=='__main__':
    
    #x为样本特征,y为样本输出,共100个样本,每个样本一个特征
    X, y = make_regression(n_samples=100, n_features=1, noise=20)
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4)
    
    # 可自行设置模型参数,如正则化,梯度下降轮数学习率等。不设置默认的数值
    model = LinearRegression(regularization=l2_regularization(alpha=0.5))
    model.fit(X_train, y_train)
    
    #画图显示
    n =len(model.training_error)
    plt.plot(range(n), model.training_error, label='Training Error')
    plt.title('Error Plot')
    plt.xlabel('Iterations')
    plt.ylabel('Loss')
    plt.show()
    
    y_pred = model.predict(X_test)
    y_pred = np.reshape(y_pred, y_test.shape)
    
    mse = mean_squared_error(y_test, y_pred)
    print('>>>>>>>>>>>>>>mse:{}>>>>>>>>>>>>>'.format(mse))
    
    y_pred_line = model.predict(X)
    
    train = plt.scatter(X_train, y_train)  
    test = plt.scatter(X_test, y_test)
    plt.plot(X, y_pred_line,color='g',lw=2, label='Prediction')
    plt.title('LinearRegression')
    plt.xlabel('Day')
    plt.ylabel('Temp')
    plt.show()

【机器学习】线性回归源码(python)_第1张图片

你可能感兴趣的:(python,机器学习,python,源码,线性回归)