现在是时候建立你的第一个神经网络了,它将具有一层隐藏层。你将看到此模型与你使用逻辑回归实现的模型之间的巨大差异。
你将学到如何:
让我们首先导入在作业过程中需要的所有软件包。
import numpy as np
import matplotlib.pyplot as plt
from testCases import *
import sklearn
import sklearn.datasets
import sklearn.linear_model
from planar_utils import plot_decision_boundary, sigmoid, load_planar_dataset, load_extra_datasets
%matplotlib inline
np.random.seed(1)
首先,让我们获取处理的数据集。以下代码会将"flower"2分类数据集加载到变量X和Y中。
X, Y = load_planar_dataset()
使用matplotlib可视化数据集。 数据看起来像是带有一些红色(标签y = 0)和一些蓝色(y = 1)点的“花”。 我们的目标是建立一个适合该数据的分类模型。
plt.scatter(X[0, :], X[1, :], c = Y.reshape(X[0, :].shape), s = 40, cmap = plt.cm.Spectral)
现在你有:
首先让我们深入地了解一下我们的数据。
练习:数据集中有多少个训练示例?另外,变量X和Y的shape是什么?
提示:如何获得numpy数组的shape维度?
shape_X = X.shape
shape_Y = Y.shape
m = shape_X[1] # 训练数据集大小
print ('The shape of X is: ' + str(shape_X))
print ('The shape of Y is: ' + str(shape_Y))
print ('I have m = %d training examples!' % (m))
The shape of X is: (2, 400)
The shape of Y is: (1, 400)
I have m = 400 training examples!
在构建完整的神经网络之前,首先让我们看看逻辑回归在此问题上的表现。 你可以使用sklearn的内置函数来执行此操作。 运行以下代码以在数据集上训练逻辑回归分类器。
clf = sklearn.linear_model.LogisticRegressionCV()
clf.fit(X.T, Y.T)
d:\vr\virtual_environment\lib\site-packages\sklearn\utils\validation.py:993: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
y = column_or_1d(y, warn=True)
LogisticRegressionCV()
现在,你可以运行下面的代码以绘制此模型的决策边界:
plot_decision_boundary(lambda x:clf.predict(x), X, Y)
plt.title("Logistic Regression")
LR_predictions = clf.predict(X.T)
print ('Accuracy of logistic regression: %d ' % float((np.dot(Y,LR_predictions) + np.dot(1-Y,1-LR_predictions))/float(Y.size)*100) +
'% ' + "(percentage of correctly labelled datapoints)")
Accuracy of logistic regression: 47 % (percentage of correctly labelled datapoints)
从上面我们可以得知Logistic回归不适用于“flower数据集”。现在你将训练带有单个隐藏层的神经网络。
数学原理:
例如 x ( i ) x^{(i)} x(i):
z [ 1 ] ( i ) = W [ 1 ] x ( i ) + b [ 1 ] ( i ) (1) z^{[1] (i)} = W^{[1]} x^{(i)} + b^{[1] (i)}\tag{1} z[1](i)=W[1]x(i)+b[1](i)(1)
a [ 1 ] ( i ) = tanh ( z [ 1 ] ( i ) ) (2) a^{[1] (i)} = \tanh(z^{[1] (i)})\tag{2} a[1](i)=tanh(z[1](i))(2)
z [ 2 ] ( i ) = W [ 2 ] a [ 1 ] ( i ) + b [ 2 ] ( i ) (3) z^{[2] (i)} = W^{[2]} a^{[1] (i)} + b^{[2] (i)}\tag{3} z[2](i)=W[2]a[1](i)+b[2](i)(3)
y ^ ( i ) = a [ 2 ] ( i ) = σ ( z [ 2 ] ( i ) ) (4) \hat{y}^{(i)} = a^{[2] (i)} = \sigma(z^{ [2] (i)})\tag{4} y^(i)=a[2](i)=σ(z[2](i))(4)
y p r e d i c t i o n ( i ) = { 1 a [ 2 ] ( i ) > 0.5 0 o t h e r w i s e (5) y_{prediction}^{(i)} = \begin{cases} 1 & a^{[2](i)} > 0.5 \\ 0 & otherwise \end{cases}\tag{5} yprediction(i)={10a[2](i)>0.5otherwise(5)
根据所有的预测数据,你还可以如下计算损失 J J J:
J = − 1 m ∑ i = 0 m ( y ( i ) log ( a [ 2 ] ( i ) ) + ( 1 − y ( i ) ) log ( 1 − a [ 2 ] ( i ) ) ) (6) J = - \frac{1}{m} \sum\limits_{i = 0}^{m} \large\left(\small y^{(i)}\log\left(a^{[2] (i)}\right) + (1-y^{(i)})\log\left(1- a^{[2] (i)}\right) \large \right) \small \tag{6} J=−m1i=0∑m(y(i)log(a[2](i))+(1−y(i))log(1−a[2](i)))(6)
提示:
建立神经网络的一般方法是:
我们通常会构建辅助函数来计算第1-3步,然后将他们合并为nn_model()函数。一旦构建了nn_model()并学习了正确的参数,就可以对新数据进行预测。
练习:定义三个变量:
提示:使用shape来找到n_x和n_y。另外,将隐藏层大小硬编码为4。
def layer_sizes(X, Y):
n_x = X.shape[0]
n_h = 4
n_y = Y.shape[0]
return (n_x, n_h, n_y)
X_assess, Y_assess = layer_sizes_test_case()
(n_x, n_h, n_y) = layer_sizes(X_assess, Y_assess)
print("The size of the input layer is: n_x = " + str(n_x))
print("The size of the hidden layer is: n_h = " + str(n_h))
print("The size of the output layer is: n_y = " + str(n_y))
The size of the input layer is: n_x = 5
The size of the hidden layer is: n_h = 4
The size of the output layer is: n_y = 2
练习:实现函数 initialize_parameters()。
说明:
def initialize_parameters(n_x, n_h, n_y):
np.random.seed(2)
W1 = np.random.randn(n_h, n_x) * 0.01
b1 = np.zeros((n_h, 1))
W2 = np.random.randn(n_y, n_h) * 0.01
b2 = np.zeros((n_y, 1))
assert (W1.shape == (n_h, n_x))
assert (b1.shape == (n_h, 1))
assert (W2.shape == (n_y, n_h))
assert (b2.shape == (n_y, 1))
parameters = {"W1": W1,
"b1": b1,
"W2": W2,
"b2": b2}
return parameters
n_x, n_h, n_y = initialize_parameters_test_case()
parameters = initialize_parameters(n_x, n_h, n_y)
print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))
W1 = [[-0.00416758 -0.00056267]
[-0.02136196 0.01640271]
[-0.01793436 -0.00841747]
[ 0.00502881 -0.01245288]]
b1 = [[0.]
[0.]
[0.]
[0.]]
W2 = [[-0.01057952 -0.00909008 0.00551454 0.02292208]]
b2 = [[0.]]
问题:实现forward_propagation()。
说明:
def forward_propagation(X, parameters):
"""
参数:
X -- 输入数据大小(n_x, m)
parameters -- 包含参数的Python字典(初始化函数的输出)
返回值:
A2 -- 用的是sigmoid函数作为输出层的激活函数
cache -- 包含“Z1”、“A1”、“Z2”和“A2”的字典
"""
W1 = parameters["W1"]
b1 = parameters["b1"]
W2 = parameters["W2"]
b2 = parameters["b2"]
Z1 = np.dot(W1, X) + b1
A1 = np.tanh(Z1)
Z2 = np.dot(W2, A1) + b2
A2 = sigmoid(Z2)
assert(A2.shape == (1, X.shape[1]))
cache = {"Z1": Z1,
"A1": A1,
"Z2": Z2,
"A2": A2}
return A2, cache
X_assess, parameters = forward_propagation_test_case()
A2, cache = forward_propagation(X_assess, parameters)
print(np.mean(cache['Z1']) ,np.mean(cache['A1']),np.mean(cache['Z2']),np.mean(cache['A2']))
-0.0004997557777419913 -0.0004969633532317802 0.0004381874509591466 0.500109546852431
现在,你已经计算了包含每个示例的 a [ 2 ] ( i ) a^{[2](i)} a[2](i)的 A [ 2 ] A^{[2]} A[2](在Python变量"A2"中),其中,你可以计算损失函数如下:
J = − 1 m ∑ i = 0 m ( y ( i ) log ( a [ 2 ] ( i ) ) + ( 1 − y ( i ) ) log ( 1 − a [ 2 ] ( i ) ) ) (13) J = - \frac{1}{m} \sum\limits_{i = 0}^{m} \large{(} \small y^{(i)}\log\left(a^{[2] (i)}\right) + (1-y^{(i)})\log\left(1- a^{[2] (i)}\right) \large{)} \small\tag{13} J=−m1i=0∑m(y(i)log(a[2](i))+(1−y(i))log(1−a[2](i)))(13)
练习:实现compute_cost()以计算损失 J J J的值。
说明:
logprobs = np.multiply(np.log(A2),Y)
cost = - np.sum(logprobs) # no need to use a for loop!
(你也可以使用np.multiply()然后使用np.sum()或直接使用np.dot())。
def compute_cost(A2, Y, parameters):
m = Y.shape[1]
logprobs = Y * np.log(A2) + (1 - Y) * np.log(1 - A2)
cost = -1 / m * np.sum(logprobs)
cost = np.squeeze(cost)
assert(isinstance(cost, float))
return cost
A2, Y_assess, parameters = compute_cost_test_case()
print("cost = " + str(compute_cost(A2, Y_assess, parameters)))
cost = 0.6929198937761265
现在,通过使用正向传播期间计算的缓存,你可以实现后向传播。
问题:实现函数backward_propagation()。
说明:反向传播通常是深度学习中最难(最数学)的部分。为了帮助你更好地了解,我们提供了反向传播课程的幻灯片。你将要使用此幻灯片右侧的六个方程式以构建向量化实现。
∂ J ∂ z 2 ( i ) = 1 m ( a [ 2 ] ( i ) − y ( i ) ) \frac {\partial J}{\partial z_2^{(i)}} = \frac {1}{m} (a^{[2](i)}-y^{(i)}) ∂z2(i)∂J=m1(a[2](i)−y(i))
∂ J ∂ W 2 = ∂ J ∂ z 2 ( i ) a [ 1 ] ( i ) T \frac {\partial J}{\partial W_2} = \frac {\partial J}{\partial z_2^{(i)}}a^{[1](i)T} ∂W2∂J=∂z2(i)∂Ja[1](i)T
∂ J ∂ b 2 = ∑ i ∂ J ∂ z 2 ( i ) \frac {\partial J}{\partial b_2} = \sum_i \frac {\partial J}{\partial z_2^{(i)}} ∂b2∂J=∑i∂z2(i)∂J
∂ J ∂ z 1 ( i ) = W 2 T ∂ J ∂ z 2 ( i ) ∗ ( 1 − a [ 1 ] ( i ) 2 ) \frac {\partial J}{\partial z_1^{(i)}} = W_2^T \frac {\partial J}{\partial z_2^{(i)}} * (1 - a^{[1](i)2}) ∂z1(i)∂J=W2T∂z2(i)∂J∗(1−a[1](i)2)
∂ J ∂ W 1 = ∂ J ∂ z 1 ( i ) X T \frac {\partial J}{\partial W_1} = \frac {\partial J}{\partial z_1^{(i)}}X^T ∂W1∂J=∂z1(i)∂JXT
∂ J i ∂ b 1 = ∑ i ∂ J ∂ z 1 ( i ) \frac {\partial J_i}{\partial b_1} = \sum_i \frac {\partial J}{\partial z_1^{(i)}} ∂b1∂Ji=∑i∂z1(i)∂J
(1 - np.power(A1, 2))
计算 g [ 1 ] ′ ( Z [ 1 ] ) g^{[1]'}(Z^{[1]}) g[1]′(Z[1])。def backward_propagation(parameters, cache, X, Y):
"""
参数:
parameters -- 包含参数的Python字典
cache -- 包含“Z1”、“A1”、“Z2”和“A2”的字典。
X -- 输入数据大小(2, 样例数)
Y -- “true”标签的形状向量(1, 样例数)
返回值:
grads -- 包含不同参数梯度的Python字典
"""
W1 = parameters["W1"]
W2 = parameters["W2"]
A1 = cache["A1"]
A2 = cache["A2"]
dZ2 = A2 - Y
dW2 = 1 / m * np.dot(dZ2, A1.T)
db2 = 1 / m * np.sum(dZ2, axis = 1, keepdims = True)
dZ1 = np.dot(W2.T, dZ2) * (1 - np.power(A1, 2))
dW1 = 1 / m * np.dot(dZ1, X.T)
db1 = 1 / m * np.sum(dZ1, axis = 1, keepdims = True)
grads = {"dW1": dW1,
"db1": db1,
"dW2": dW2,
"db2": db2}
return grads
parameters, cache, X_assess, Y_assess = backward_propagation_test_case()
grads = backward_propagation(parameters, cache, X_assess, Y_assess)
print ("dW1 = "+ str(grads["dW1"]))
print ("db1 = "+ str(grads["db1"]))
print ("dW2 = "+ str(grads["dW2"]))
print ("db2 = "+ str(grads["db2"]))
dW1 = [[ 7.64031222e-05 -5.31526069e-05]
[ 6.55085623e-05 -4.55760073e-05]
[-3.98134983e-05 2.77034561e-05]
[-1.65477342e-04 1.15134485e-04]]
db1 = [[-5.22957353e-06]
[-4.54546847e-06]
[ 2.72996662e-06]
[ 1.13405247e-05]]
dW2 = [[ 2.72709941e-05 2.36520302e-04 8.72185240e-05 -9.88737100e-05]]
db2 = [[0.00049421]]
问题:实现参数更新。 使用梯度下降,你必须使用(dW1,db1,dW2,db2)才能更新(W1,b1,W2,b2)。
一般的梯度下降规则:$ \theta = \theta - \alpha \frac{\partial J }{ \partial \theta } 其 中 其中 其中\alpha 是 学 习 率 , 而 是学习率,而 是学习率,而\theta$代表一个参数。
图示:具有良好的学习速率(收敛)和较差的学习速率(发散)的梯度下降算法。
def update_parameters(parameters, grads, learning_rate = 1.2):
W1 = parameters["W1"]
b1 = parameters["b1"]
W2 = parameters["W2"]
b2 = parameters["b2"]
dW1 = grads["dW1"]
db1 = grads["db1"]
dW2 = grads["dW2"]
db2 = grads["db2"]
W1 = W1 - learning_rate * dW1
b1 = b1 - learning_rate * db1
W2 = W2 - learning_rate * dW2
b2 = b2 - learning_rate * db2
parameters = {"W1": W1,
"b1": b1,
"W2": W2,
"b2": b2}
return parameters
parameters, grads = update_parameters_test_case()
parameters = update_parameters(parameters, grads)
print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))
W1 = [[-0.00643025 0.01936718]
[-0.02410458 0.03978052]
[-0.01653973 -0.02096177]
[ 0.01046864 -0.05990141]]
b1 = [[-1.02420756e-06]
[ 1.27373948e-05]
[ 8.32996807e-07]
[-3.20136836e-06]]
W2 = [[-0.01041081 -0.04463285 0.01758031 0.04747113]]
b2 = [[0.00010457]]
问题:在nn_model()中建立你的神经网络模型。
说明:神经网络模型必须正确的顺序组合先前构建的函数。
def nn_model(X, Y, n_h, num_iterations = 10000, print_cost = False):
np.random.seed(3)
n_x = layer_sizes(X, Y)[0]
n_y = layer_sizes(X, Y)[2]
parameters = initialize_parameters(n_x, n_h, n_y)
W1 = parameters["W1"]
b1 = parameters["b1"]
W2 = parameters["W2"]
b2 = parameters["b2"]
for i in range(0, num_iterations):
A2, cache = forward_propagation(X, parameters)
cost = compute_cost(A2, Y, parameters)
grads = backward_propagation(parameters, cache, X, Y)
parameters = update_parameters(parameters, grads)
if print_cost and i % 1000 == 0:
print ("Cost after iteration %i: %f" %(i, cost))
return parameters
X_assess, Y_assess = nn_model_test_case()
parameters = nn_model(X_assess, Y_assess, 4, num_iterations=10000, print_cost=False)
print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))
d:\vr\virtual_environment\lib\site-packages\ipykernel_launcher.py:5: RuntimeWarning: divide by zero encountered in log
"""
W1 = [[-2.83554662 1.72205388]
[-3.37802227 0.92947318]
[-2.54331167 2.02087066]
[ 3.37518445 -0.93029167]]
b1 = [[ 1.3407194 ]
[ 1.67353851]
[ 1.23099392]
[-1.67347162]]
W2 = [[-43.10905352 -43.84863143 -42.31070324 43.80751756]]
b2 = [[-0.93568323]]
问题:使用你的模型通过构建predict()函数进行预测。
使用正向传播来预测结果。
提示:predictions = y p r e d i c t i o n = 1 activation > 0.5 = { 1 if a c t i v a t i o n > 0.5 0 otherwise y_{prediction} = \mathbb 1 \text{{activation > 0.5}} = \begin{cases} 1 & \text{if}\ activation > 0.5 \\ 0 & \text{otherwise} \end{cases} yprediction=1activation > 0.5={10if activation>0.5otherwise
例如,如果你想基于阈值将矩阵X设为0和1,则可以执行以下操作: X_new = (X > threshold)
round()函数:
一般该函数遵循四舍五入原则,但是需要特别注意的是,当整数部分以0结束时,round函数一律是向下取整。
def predict(parameters, X):
A2, cache = forward_propagation(X, parameters)
predictions = np.round(A2)
return predictions
parameters, X_assess = predict_test_case()
predictions = predict(parameters, X_assess)
print("predictions mean = " + str(np.mean(predictions)))
predictions mean = 0.6666666666666666
现在运行模型以查看其如何在二维数据集上运行。运行以下代码以使用含有隐藏单元的单个隐藏层测试模型。
parameters = nn_model(X, Y, n_h = 4, num_iterations = 10000, print_cost=True)
plot_decision_boundary(lambda x: predict(parameters, x.T), X, Y)
plt.title("Decision Boundary for hidden layer size " + str(4))
Cost after iteration 0: 0.693048
Cost after iteration 1000: 0.288083
Cost after iteration 2000: 0.254385
Cost after iteration 3000: 0.233864
Cost after iteration 4000: 0.226792
Cost after iteration 5000: 0.222644
Cost after iteration 6000: 0.219731
Cost after iteration 7000: 0.217504
Cost after iteration 8000: 0.219440
Cost after iteration 9000: 0.218553
Text(0.5, 1.0, 'Decision Boundary for hidden layer size 4')
predictions = predict(parameters, X)
print ('Accuracy: %d' % float((np.dot(Y,predictions.T) + np.dot(1-Y,1-predictions.T))/float(Y.size)*100) + '%')
Accuracy: 90%
与Logistic回归相比,准确性确实更高。 该模型学习了flower的叶子图案! 与逻辑回归不同,神经网络甚至能够学习非线性的决策边界。
现在,让我们尝试几种不同的隐藏层大小。
运行以下代码(可能需要1-2分钟), 你将观察到不同大小隐藏层的模型的不同表现。
plt.figure(figsize=(16, 32))
hidden_layer_sizes = [1, 2, 3, 4, 5, 10, 20]
for i, n_h in enumerate(hidden_layer_sizes):
plt.subplot(5, 2, i+1)
plt.title('Hidden Layer of size %d' % n_h)
parameters = nn_model(X, Y, n_h, num_iterations = 5000)
plot_decision_boundary(lambda x: predict(parameters, x.T), X, Y)
predictions = predict(parameters, X)
accuracy = float((np.dot(Y,predictions.T) + np.dot(1-Y,1-predictions.T))/float(Y.size)*100)
print ("Accuracy for {} hidden units: {} %".format(n_h, accuracy))
Accuracy for 1 hidden units: 67.5 %
Accuracy for 2 hidden units: 67.25 %
Accuracy for 3 hidden units: 90.75 %
Accuracy for 4 hidden units: 90.5 %
Accuracy for 5 hidden units: 91.25 %
Accuracy for 10 hidden units: 90.25 %
Accuracy for 20 hidden units: 90.5 %
说明:
总结:
noisy_circles, noisy_moons, blobs, gaussian_quantiles, no_structure = load_extra_datasets()
datasets = {"noisy_circles": noisy_circles,
"noisy_moons": noisy_moons,
"blobs": blobs,
"gaussian_quantiles": gaussian_quantiles}
dataset = "noisy_circles"
X, Y = datasets[dataset]
X, Y = X.T, Y.reshape(1, Y.shape[0])
if dataset == "blobs":
Y = Y%2
plt.scatter(X[0, :], X[1, :], c=Y.reshape(X[0,:].shape), s=40, cmap=plt.cm.Spectral);