目录
1)DSL查询分类
2)全文检索查询
1、使用场景
2、基本语法
3、示例
4、总结
3)精准查询
1、term 查询
2、range查询
3、总结
4)地理坐标查询
1、矩形范围查询
2、附近查询
5)复合查询
1、相关性算分
2、算分函数查询
3、布尔查询
elasticsearch的查询依然是基于JSON风格的DSL来实现的。
Elasticsearch提供了机遇JSON的DSL(Domain Specific Language)来定义查询,常用的查询类型包括:
- 查询所有:查询出所有的数据,一般测试用。例如:match_all
- 全文检索(full text)查询:利用分词器对用户输入内容分词,然后去倒排索引库中匹配。例如: match_query ; multi_match_query
- 精确查询:根据精确词条值查找数据,一般是查找keyword、数值、日前、boolean等类型字段。例如:ids ;range; term
- 地理(geo)查询:根据经纬度查询。例如: geo_distance ;geo_bounding_box
- 复合(compound)查询:复合查询可以将上述各种查询条件组合起来,合并查询条件。例如:bool ; function_score
查询的语法基本一致:
GET /indexName/_search
{
"query": {
"查询类型": {
"查询条件": "条件值"
}
}
}
我们以查询所有为例,其中:
查询类型为match_all
没有查询条件
// 查询所有
GET /indexName/_search
{
"query": {
"match_all": {
}
}
}
其它查询无非就是查询类型、查询条件的变化。
全文检索查询的基本流程如下:
- 对用户搜索的内容做分词,得到词条
- 根据词条去倒排索引库中匹配,得到文档id
- 根据文档id找到文档,返回给用户
比较常用的场景包括:
例如淘宝:
因为是拿着词条去匹配,因此参与搜索的字段也必须是可分词的text类型的字段。
常用的全文检索查询包括:
match 查询语法如下:
GET /indexName/_search
{
"query": {
"match": {
"FIELD": "TEXT"
}
}
}
multi_match语法如下:
GET /indexName/_search
{
"query": {
"multi_match": {
"query": "TEXT",
"fields": ["FIELD1", " FIELD12"]
}
}
}
match查询示例:
multi_match 查询示例:
可以看到,两种查询结果是一样的,为什么?
因为我们将brand、name、business值都利用copy_to复制到了all字段中。因此你根据三个字段搜索,和根据all字段搜索效果当然一样了。
但是,搜索字段越多,对查询性能影响越大,因此建议采用copy_to,然后单字段查询的方式。
match和multi_match的区别是什么?
match:根据一个字段查询
multi_match:根据多个字段查询,参与查询字段越多,查询性能越差
精确查询一般是查找keyword、数值、日期、boolean等类型字段。所以不会对搜索条件分词。常见的有:
- term:根据词条精确值查询
- range:根据值的范围查询
因为精确查询的字段搜是不分词的字段,因此查询的条件必须是不分词的词条,查询时,用户输入的内容跟字段值完全匹配时才认为符合条件。如果用户输入的内容过多,反而搜索不到数据。
语法说明:
// term查询
GET /indexName/_search
{
"query": {
"term": {
"FIELD": {
"value": "VALUE"
}
}
}
}
示例:
当我搜索的是精确词条时,能正确查询出结果:
但是,当我搜索的内容不是词条,而是多个词语形成的短语时,反而搜索不到:
范围查询,一般应用在对数值类型做范围过滤的时候。比如做价格范围过滤。
基本语法:
// range查询
GET /indexName/_search
{
"query": {
"range": {
"FIELD": {
"gte": 10, // 这里的gte代表大于等于,gt则代表大于
"lte": 20 // lte代表小于等于,lt则代表小于
}
}
}
}
示例:
精确查询常见的有哪些?
term查询:根据词条精确匹配,一般搜索keyword类型、数值类型、布尔类型、日期类型字段
range查询:根据数值范围查询,可以是数值、日期的范围
所谓的地理坐标查询,其实就是根据经纬度查询,官方文档:Geo queries | Elasticsearch Guide [8.2] | Elastic
常见的使用场景包括:
携程:搜索我附近的酒店
滴滴:搜索我附近的出租车
微信:搜索我附近的人
附近的酒店:
附近的车:
矩形范围查询,也就是geo_bounding_box查询,查询坐标落在某个矩形范围的所有文档:
查询时,需要指定矩形的左上、右下两个点的坐标,然后画出一个矩形,落在该矩形内的都是符合条件的点。
语法如下:
// geo_bounding_box查询
GET /indexName/_search
{
"query": {
"geo_bounding_box": {
"FIELD": {
"top_left": { // 左上点
"lat": 31.1,
"lon": 121.5
},
"bottom_right": { // 右下点
"lat": 30.9,
"lon": 121.7
}
}
}
}
}
附近查询,也叫做距离查询(geo_distance):查询到指定中心点小于某个距离值的所有文档。
换句话来说,在地图上找一个点作为圆心,以指定距离为半径,画一个圆,落在圆内的坐标都算符合条件:
语法说明:
// geo_distance 查询
GET /indexName/_search
{
"query": {
"geo_distance": {
"distance": "15km", // 半径
"FIELD": "31.21,121.5" // 圆心
}
}
}
示例:
我们先搜索深圳北站附近15km的酒店:
发现还有34家,我们将范围缩小到5km
可以发现,搜索到的酒店数量减少到了2家。
复合(compound)查询:复合查询可以将其它简单查询组合起来,实现更复杂的搜索逻辑。常见的有两种:
fuction score:算分函数查询,可以控制文档相关性算分,控制文档排名
bool query:布尔查询,利用逻辑关系组合多个其它的查询,实现复杂搜索
当我们利用match查询时,文档结果会根据与搜索词条的关联度打分(_score),返回结果时按照分值降序排列。
例如,我们搜索 "深圳维也纳",结果如下:
[
{
"_score" : 17.850193,
"_source" : {
"name" : "深圳维也纳酒店真不错",
}
},
{
"_score" : 12.259849,
"_source" : {
"name" : "维也纳酒店真不错",
}
},
{
"_score" : 11.91091,
"_source" : {
"name" : "深圳7天酒店真不错",
}
}
]
在elasticsearch中,早期使用的打分算法是TF-IDF算法,公式如下:
在后来的5.1版本升级中,elasticsearch将算法改进为BM25算法,公式如下:
TF-IDF算法有一各缺陷,就是词条频率越高,文档得分也会越高,单个词条对文档影响较大。而BM25则会让单个词条的算分有一个上限,曲线更加平滑:
小结:elasticsearch会根据词条和文档的相关度做打分,算法由两种:
TF-IDF算法
BM25算法,elasticsearch5.1版本后采用的算法
根据相关度打分是比较合理的需求,但合理的不一定是产品经理需要的。
以百度为例,你搜索的结果中,并不是相关度越高排名越靠前,而是谁掏的钱多排名就越靠前。如图:
要想人为的控制相关性算分,就需要利用elasticsearch中的function_score 查询了。
1-语法说明
function score 查询中包含四部分内容:
原始查询条件:query部分,基于这个条件搜索文档,并且基于BM25算法给文档打分,原始算分(query score)
过滤条件:filter部分,符合该条件的文档才会重新算分
算分函数:符合filter条件的文档要根据这个函数做运算,得到的函数算分(function score),有四种函数
weight:函数结果是常量
field_value_factor:以文档中的某个字段值作为函数结果
random_score:以随机数作为函数结果
script_score:自定义算分函数算法
运算模式:算分函数的结果、原始查询的相关性算分,两者之间的运算方式,包括:
multiply:相乘
replace:用function score替换query score
其它,例如:sum、avg、max、min
function score的运行流程如下:
1)根据原始条件查询搜索文档,并且计算相关性算分,称为原始算分(query score)
2)根据过滤条件,过滤文档
3)符合过滤条件的文档,基于算分函数运算,得到函数算分(function score)
4)将原始算分(query score)和函数算分(function score)基于运算模式做运算,得到最终结果,作为相关性算分。
因此,其中的关键点是:
过滤条件:决定哪些文档的算分被修改
算分函数:决定函数算分的算法
运算模式:决定最终算分结果
2-示例
需求:给“维也纳”这个品牌的酒店排名靠前一些
翻译一下这个需求,转换为之前说的四个要点:
原始条件:不确定,可以任意变化
过滤条件:brand = "维也纳"
算分函数:可以简单粗暴,直接给固定的算分结果,weight
运算模式:比如求和
因此最终的DSL语句如下:
GET /hotel/_search { "query": { "function_score": { "query": { .... }, // 原始查询,可以是任意条件 "functions": [ // 算分函数 { "filter": { // 满足的条件,品牌必须是如家 "term": { "brand": "维也纳" } }, "weight": 2 // 算分权重为2 } ], "boost_mode": "sum" // 加权模式,求和 } } }
测试,在未添加算分函数时,维也纳得分如下:
添加了算分函数后,维也纳得分就提升了:
3)小结
function score query定义的三要素是什么?
过滤条件:哪些文档要加分
算分函数:如何计算function score
加权方式:function score 与 query score如何运算
布尔查询是一个或多个查询子句的组合,每一个子句就是一个子查询。子查询的组合方式有:
must:必须匹配每个子查询,类似“与”
should:选择性匹配子查询,类似“或”
must_not:必须不匹配,不参与算分,类似“非”
filter:必须匹配,不参与算分
比如在搜索酒店时,除了关键字搜索外,我们还可能根据品牌、价格、城市等字段做过滤:
每一个不同的字段,其查询的条件、方式都不一样,必须是多个不同的查询,而要组合这些查询,就必须用bool查询了。
需要注意的是,搜索时,参与打分的字段越多,查询的性能也越差。因此这种多条件查询时,建议这样做:
搜索框的关键字搜索,是全文检索查询,使用must查询,参与算分
其它过滤条件,采用filter查询。不参与算分
1-语法示例:
GET /hotel/_search { "query": { "bool": { "must": [ {"term": { "city": { "value": "深圳" } }} ], "should": [ {"term": { "brand": { "value": "汉庭" } } }, {"term": { "brand": { "value": "维也纳" } } } ], "must_not": [ { "range": { "price": { "lte": 500 } } } ], "filter": [ {"range": { "score": { "gte": 45 } }} ] } } }
2-示例
需求:搜索城市在“深圳”,价格不高于500,在坐标 22.52,114.06 周围10km范围内的酒店。
分析:
名称搜索,属于全文检索查询,应该参与算分。放到must中
价格不高于500,用range查询,属于过滤条件,不参与算分。放到must_not中
周围10km范围内,用geo_distance查询,属于过滤条件,不参与算分。放到filter中
GET /hotel/_search { "query": { "bool": { "must": [ {"term": { "city": { "value": "深圳" } }} ], "should": [ {"term": { "brand": { "value": "汉庭" } } }, {"term": { "brand": { "value": "维也纳" } } } ], "must_not": [ { "range": { "price": { "lte": 500 } } } ], "filter": [ {"geo_distance": { "distance": "10km", "location": "22.528101,114.064221" }} ] } } }
3-小结
bool查询有几种逻辑关系?
must:必须匹配的条件,可以理解为“与”
should:选择性匹配的条件,可以理解为“或”
must_not:必须不匹配的条件,不参与打分
filter:必须匹配的条件,不参与打分