PPOCRv3模型转pytorch

序言

前段时间PaddleOCRv3版本发布,更新了检测和识别模型,性能有很大提升,本着能嫖就嫖的原则,刚出来的第一天就开始嫖上了,虽然新模型的性能相较于之前有较大提升,但是乍一看模型结构复杂了很多,部署起来要麻烦了很多,现阶段paddle框架转其他部署框架只能通过转paddle2onnx再转其他框架实现,所以打算踩下坑,提供import paddle as torch版本的模型:将paddle框架的模型权重转到pytorch上,为部署方案提供多一些选择,转换到pytorch框架上后可以通过从pytorch再转其他部署方式,举个之前的例子:使用pnnx把pytorch模型转ncnn模型。

与之前的模型性能对比:
PPOCRv3模型转pytorch_第1张图片
本项目代码实现基于:

  • https://github.com/WenmuZhou/PytorchOCR
  • https://github.com/PaddlePaddle/PaddleOCR

一、paddle2torch

先说下转换原理,因为paddlepaddle和pytorch都是动态框架,所以转换起来比较简单,对于要转换的paddle模型,我们只需要用torch重新构建相同的网络模型结构,然后将paddle的权重取出,一一对应赋值进每一层。看似过程比较简单,但是毕竟是不同的框架,有些op实现也是不同的,难免会踩很多坑。

在转换之前,我们先看一下PaddleOCRV3相对于上一个版本的模型更新了那些模块:
PPOCRv3模型转pytorch_第2张图片

检测模块

  1. LK-PAN:大感受野的PAN结构
  2. DML:教师模型互学习策略
  3. RSE-FPN:残差注意力机制的FPN结构

识别模块

  • SVTR_LCNet:轻量级文本识别网络
  • GTC:Attention指导CTC训练策略
  • TextConAug:挖掘文字上下文信息的数据增广策略
  • TextRotNet:自监督的预训练模型
  • UDML:联合互学习策略
  • UIM:无标注数据挖掘方案

具体的可以看PPOCRV3官方的技术报告,在这里我们只需要关注我们转换的过程需要注意的那些模块即可

二、检测模型转换

首先是检测模块,检测模块有三部分更新,我们只需要关注RSE-FPN,因为前两个都是在训练过程中蒸馏学习对教师模型的优化。

RSE-FPN(Residual Squeeze-and-Excitation FPN)如下图所示,引入残差结构和通道注意力结构,将FPN中的卷积层更换为通道注意力结构的RSEConv层,进一步提升特征图的表征能力。考虑到PP-OCRv2的检测模型中FPN通道数非常小,仅为96,如果直接用SEblock代替FPN中卷积会导致某些通道的特征被抑制,精度会下降。RSEConv引入残差结构会缓解上述问题,提升文本检测效果。进一步将PP-OCRv2中CML的学生模型的FPN结构更新为RSE-FPN,学生模型的hmean可以进一步从84.3%提升到85.4%:
PPOCRv3模型转pytorch_第3张图片
RSE-FPN pytorch代码实现:

class RSELayer(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size, shortcut=True):
        super(RSELayer, self).__init__()
        self.out_channels = out_channels
        self.in_conv = nn.Conv2d(
            in_channels=in_channels,
            out_channels=self.out_channels,
            kernel_size=kernel_size,
            padding=int(kernel_size // 2),
            bias=False)
        self.se_block = SEBlock(self.out_channels,self.out_channels)
        self.shortcut = shortcut

    def forward(self, ins):
        x = self.in_conv(ins)
        if self.shortcut:
            out = x + self.se_block(x)
        else:
            out = self.se_block(x)
        return out


class RSEFPN(nn.Module):
    def __init__(self, in_channels, out_channels=256, shortcut=True, **kwargs):
        super(RSEFPN, self).__init__()
        self.out_channels = out_channels
        self.ins_conv = nn.ModuleList()
        self.inp_conv = nn.ModuleList()

        for i in range(len(in_channels)):
            self.ins_conv.append(
                RSELayer(
                    in_channels[i],
                    out_channels,
                    kernel_size=1,
                    shortcut=shortcut))
            self.inp_conv.append(
                RSELayer(
                    out_channels,
                    out_channels // 4,
                    kernel_size=3,
                    shortcut=shortcut))

    def _upsample_add(self, x, y):
        return F.interpolate(x, scale_factor=2) + y

    def _upsample_cat(self, p2, p3, p4, p5):
        p3 = F.interpolate(p3, scale_factor=2)
        p4 = F.interpolate(p4, scale_factor=4)
        p5 = F.interpolate(p5, scale_factor=8)
        return torch.cat([p5, p4, p3, p2], dim=1)

    def forward(self, x):
        c2, c3, c4, c5 = x

        in5 = self.ins_conv[3](c5)
        in4 = self.ins_conv[2](c4)
        in3 = self.ins_conv[1](c3)
        in2 = self.ins_conv[0](c2)

        out4 = self._upsample_add(in5, in4)
        out3 = self._upsample_add(out4, in3)
        out2 = self._upsample_add(out3, in2)

        p5 = self.inp_conv[3](in5)
        p4 = self.inp_conv[2](out4)
        p3 = self.inp_conv[1](out3)
        p2 = self.inp_conv[0](out2)

        x = self._upsample_cat(p2, p3, p4, p5)
        return x

完整的网络分为三部分:Backbone(MobileNetV3)、Neck(RSEFPN)、Head(DBHead),借助于PytorchOCR项目,将这三部分分别实现,然后将网络搭建。

from torch import nn
from det.DetMobilenetV3 import MobileNetV3
from det.DB_fpn import DB_fpn,RSEFPN,LKPAN
from det.DetDbHead import DBHead

backbone_dict = {'MobileNetV3': MobileNetV3}
neck_dict = {'DB_fpn': DB_fpn,'RSEFPN':RSEFPN,'LKPAN':LKPAN}
head_dict = {'DBHead': DBHead}

class DetModel(nn.Module):
    def __init__(self, config):
        super().__init__()
        assert 'in_channels' in config, 'in_channels must in model config'
        backbone_type = config.backbone.pop('type')
        assert backbone_type in backbone_dict, f'backbone.type must in {backbone_dict}'
        self.backbone = backbone_dict[backbone_type](config.in_channels, **config.backbone)

        neck_type = config.neck.pop('type')
        assert neck_type in neck_dict, f'neck.type must in {neck_dict}'
        self.neck = neck_dict[neck_type](self.backbone.out_channels, **config.neck)

        head_type = config.head.pop('type')
        assert head_type in head_dict, f'head.type must in {head_dict}'
        self.head = head_dict[head_type](self.neck.out_channels, **config.head)

        self.name = f'DetModel_{backbone_type}_{neck_type}_{head_type}'

    def load_3rd_state_dict(self, _3rd_name, _state):
        self.backbone.load_3rd_state_dict(_3rd_name, _state)
        self.neck.load_3rd_state_dict(_3rd_name, _state)
        self.head.load_3rd_state_dict(_3rd_name, _state)

    def forward(self, x):
        x = self.backbone(x)
        x = self.neck(x)
        x = self.head(x)
        return x

if __name__=="__main__":
    db_config = AttrDict(
        in_channels=3,
        backbone=AttrDict(type='MobileNetV3', model_name='large',scale=0.5,pretrained=True),
        neck=AttrDict(type='RSEFPN', out_channels=96),
        head=AttrDict(type='DBHead')
    )

    model = DetModel(db_config)

然后使用paddleOCRV3的文字检测训练模型(注意只能用训练模型),将模型的权重和对应的键值取出,分别对应初始化到torch模型中,完整代码在文后链接。

def load_state(path,trModule_state):
    """
    记载paddlepaddle的参数
    :param path:
    :return:
    """
    if os.path.exists(path + '.pdopt'):
        # XXX another hack to ignore the optimizer state
        tmp = tempfile.mkdtemp()
        dst = os.path.join(tmp, os.path.basename(os.path.normpath(path)))
        shutil.copy(path + '.pdparams', dst + '.pdparams')
        state = fluid.io.load_program_state(dst)
        shutil.rmtree(tmp)
    else:
        state = fluid.io.load_program_state(path)

    # for i, key in enumerate(state.keys()):
    #     print("{}  {} ".format(i, key))

    state_dict = {}
    for i, key in enumerate(state.keys()):
        if key =="StructuredToParameterName@@":
            continue
        state_dict[trModule_state[i]] = torch.from_numpy(state[key])

    return state_dict

三、识别模型转换

识别模型的转换相对于检测模型要复杂很多,PP-OCRv3的识别模块是基于文本识别算法SVTR优化。SVTR不再采用RNN结构,通过引入Transformers结构更加有效地挖掘文本行图像的上下文信息,从而提升文本识别能力,上面的诸多识别优化中,我们只需要关注第一个优化:SVTR_LCNet,其他的都是训练过程中的训练技巧,在模型转换的过程中不需要用到。

SVTR_LCNet是针对文本识别任务,将基于Transformer的SVTR网络和轻量级CNN网络PP-LCNet 融合的一种轻量级文本识别网络,整体网络如下所示:
PPOCRv3模型转pytorch_第4张图片
使用该网络,预测速度优于PP-OCRv2的识别模型20%,但是由于没有采用蒸馏策略,该识别模型效果略差。此外,进一步将输入图片规范化高度从32提升到48,预测速度稍微变慢,但是模型效果大幅提升,识别准确率达到73.98%(+2.08%),接近PP-OCRv2采用蒸馏策略的识别模型效果,消融实验过程:
PPOCRv3模型转pytorch_第5张图片

同样的,根据paddle的识别网络结构构建torch网络模型,模型分为三部分:Backbone(LCNet)、Encoder(SVTR Transformers)、Head(MultiHead),其中Encoder部分使用了SVTR的Transformers结构编码:

class EncoderWithSVTR(nn.Module):
    def __init__(
            self,
            in_channels,
            dims=64,  # XS
            depth=2,
            hidden_dims=120,
            use_guide=False,
            num_heads=8,
            qkv_bias=True,
            mlp_ratio=2.0,
            drop_rate=0.1,
            attn_drop_rate=0.1,
            drop_path=0.,
            qk_scale=None):
        super(EncoderWithSVTR, self).__init__()
        self.depth = depth
        self.use_guide = use_guide
        self.conv1 = ConvBNLayer(
            in_channels, in_channels // 8, padding=1)
        self.conv2 = ConvBNLayer(
            in_channels // 8, hidden_dims, kernel_size=1)

        self.svtr_block = nn.ModuleList([
            Block(
                dim=hidden_dims,
                num_heads=num_heads,
                mixer='Global',
                HW=None,
                mlp_ratio=mlp_ratio,
                qkv_bias=qkv_bias,
                qk_scale=qk_scale,
                drop=drop_rate,
                act_layer="Swish",
                attn_drop=attn_drop_rate,
                drop_path=drop_path,
                norm_layer='nn.LayerNorm',
                epsilon=1e-05,
                prenorm=False) for i in range(depth)
        ])
        self.norm = nn.LayerNorm(hidden_dims, eps=1e-6)
        self.conv3 = ConvBNLayer(
            hidden_dims, in_channels, kernel_size=1)
        # last conv-nxn, the input is concat of input tensor and conv3 output tensor
        self.conv4 = ConvBNLayer(
            2 * in_channels, in_channels // 8, padding=1)

        self.conv1x1 = ConvBNLayer(
            in_channels // 8, dims, kernel_size=1)
        self.out_channels = dims
        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight)
            if isinstance(m, nn.Linear) and m.bias is not None:
                zeros_(m.bias)
        elif isinstance(m, nn.LayerNorm):
            zeros_(m.bias)
            ones_(m.weight)

    def forward(self, x):
        # for use guide
        if self.use_guide:
            z = x.clone()
            z.stop_gradient = True
        else:
            z = x
        # for short cut
        h = z
        # reduce dim
        z = self.conv1(z)
        z = self.conv2(z)
        # SVTR global block
        B, C, H, W = z.shape
        z = z.flatten(2).permute([0, 2, 1])
        for blk in self.svtr_block:
            z = blk(z)
        z = self.norm(z)
        # last stage
        z = z.reshape([-1, H, W, C]).permute([0, 3, 1, 2])
        z = self.conv3(z)
        z = torch.cat((h, z), dim=1)
        z = self.conv1x1(self.conv4(z))
        return z

Head部分是一个多头,但是在推理的时候实际上也只用了CTCHead,把训练时候的SARHead去掉了,所以这部分不需要在网络构建时加进去。

class MultiHead(nn.Module):
    def __init__(self, in_channels, **kwargs):
        super().__init__()
        self.out_c = kwargs.get('n_class')
        self.head_list = kwargs.get('head_list')
        self.gtc_head = 'sar'
        # assert len(self.head_list) >= 2
        for idx, head_name in enumerate(self.head_list):
            # name = list(head_name)[0]
            name = head_name
            if name == 'SARHead':
                # sar head
                sar_args = self.head_list[name]
                self.sar_head = eval(name)(in_channels=in_channels, out_channels=self.out_c, **sar_args)
            if name == 'CTC':
                # ctc neck
                self.encoder_reshape = Im2Seq(in_channels)
                neck_args = self.head_list[name]['Neck']
                encoder_type = neck_args.pop('name')
                self.encoder = encoder_type
                self.ctc_encoder = SequenceEncoder(in_channels=in_channels,encoder_type=encoder_type, **neck_args)
                # ctc head
                head_args = self.head_list[name]
                self.ctc_head = eval(name)(in_channels=self.ctc_encoder.out_channels,n_class=self.out_c, **head_args)
            else:
                raise NotImplementedError(
                    '{} is not supported in MultiHead yet'.format(name))

    def forward(self, x, targets=None):
        ctc_encoder = self.ctc_encoder(x)
        ctc_out = self.ctc_head(ctc_encoder, targets)
        head_out = dict()
        head_out['ctc'] = ctc_out
        head_out['ctc_neck'] = ctc_encoder
        return ctc_out                          # infer   不经过SAR直接返回
        
        # # eval mode
        # print(not self.training)
        # if not self.training:                 # training
        #     return ctc_out
        # if self.gtc_head == 'sar':
        #     sar_out = self.sar_head(x, targets[1:])
        #     head_out['sar'] = sar_out
        #     return head_out
        # else:
        #     return head_out

完整的网络构建:

from torch import nn

from rec.RNN import SequenceEncoder, Im2Seq,Im2Im
from rec.RecSVTR import SVTRNet
from rec.RecMv1_enhance import MobileNetV1Enhance

from rec.RecCTCHead import CTC,MultiHead

backbone_dict = {"SVTR":SVTRNet,"MobileNetV1Enhance":MobileNetV1Enhance}
neck_dict = {'PPaddleRNN': SequenceEncoder, 'Im2Seq': Im2Seq,'None':Im2Im}
head_dict = {'CTC': CTC,'Multi':MultiHead}


class RecModel(nn.Module):
    def __init__(self, config):
        super().__init__()
        assert 'in_channels' in config, 'in_channels must in model config'
        backbone_type = config.backbone.pop('type')
        assert backbone_type in backbone_dict, f'backbone.type must in {backbone_dict}'
        self.backbone = backbone_dict[backbone_type](config.in_channels, **config.backbone)

        neck_type = config.neck.pop('type')
        assert neck_type in neck_dict, f'neck.type must in {neck_dict}'
        self.neck = neck_dict[neck_type](self.backbone.out_channels, **config.neck)

        head_type = config.head.pop('type')
        assert head_type in head_dict, f'head.type must in {head_dict}'
        self.head = head_dict[head_type](self.neck.out_channels, **config.head)

        self.name = f'RecModel_{backbone_type}_{neck_type}_{head_type}'

    def load_3rd_state_dict(self, _3rd_name, _state):
        self.backbone.load_3rd_state_dict(_3rd_name, _state)
        self.neck.load_3rd_state_dict(_3rd_name, _state)
        self.head.load_3rd_state_dict(_3rd_name, _state)

    def forward(self, x):
        x = self.backbone(x)
        x = self.neck(x)
        x = self.head(x)
        return x

if __name__=="__main__":

    rec_config = AttrDict(
        in_channels=3,
        backbone=AttrDict(type='MobileNetV1Enhance', scale=0.5,last_conv_stride=[1,2],last_pool_type='avg'),
        neck=AttrDict(type='None'),
   head=AttrDict(type='Multi',head_list=AttrDict(CTC=AttrDict(Neck=AttrDict(name="svtr",dims=64,depth=2,hidden_dims=120,use_guide=True)),
                                                       # SARHead=AttrDict(enc_dim=512,max_text_length=70)
                                                      ),
                      n_class=6625)
    )

    model = RecModel(rec_config)

同样的,加载paddleocrv3的识别训练模型,将权重对应键值取出,初始化到torch模型中,但是这里需要注意的是,paddle中的全链接层和torch中全链接层的权重形状问题,paddle的全链接层赋值到torch的全链接层的时候,权重需要做一个转置transpose():

def load_state(path,trModule_state):
    """
    记载paddlepaddle的参数
    :param path:
    :return:
    """
    if os.path.exists(path + '.pdopt'):
        # XXX another hack to ignore the optimizer state
        tmp = tempfile.mkdtemp()
        dst = os.path.join(tmp, os.path.basename(os.path.normpath(path)))
        shutil.copy(path + '.pdparams', dst + '.pdparams')
        state = fluid.io.load_program_state(dst)
        shutil.rmtree(tmp)
    else:
        state = fluid.io.load_program_state(path)

    # for i, key in enumerate(state.keys()):
    #     print("{}  {} ".format(i, key))
    keys = ["head.ctc_encoder.encoder.svtr_block.0.mixer.qkv.weight",
            "head.ctc_encoder.encoder.svtr_block.0.mixer.proj.weight",
            "head.ctc_encoder.encoder.svtr_block.0.mlp.fc1.weight",
            "head.ctc_encoder.encoder.svtr_block.0.mlp.fc2.weight",
            "head.ctc_encoder.encoder.svtr_block.1.mixer.qkv.weight",
            "head.ctc_encoder.encoder.svtr_block.1.mixer.proj.weight",
            "head.ctc_encoder.encoder.svtr_block.1.mlp.fc1.weight",
            "head.ctc_encoder.encoder.svtr_block.1.mlp.fc2.weight",
            "head.ctc_head.fc.weight",
            ]

    state_dict = {}
    for i, key in enumerate(state.keys()):
        if key =="StructuredToParameterName@@":
            continue
        if i > 238:
            j = i-239
            if j <= 195:
                if trModule_state[j] in keys:
                    state_dict[trModule_state[j]] = torch.from_numpy(state[key]).transpose(0,1)
                else:
                    state_dict[trModule_state[j]] = torch.from_numpy(state[key])

    return state_dict

paddleocr的训练模型链接PaddleOCR:
PPOCRv3模型转pytorch_第6张图片
完整代码已经扔到github上,欢迎白嫖学习。

paddle2torch_PPOCRv3

你可能感兴趣的:(OCR,pytorch,深度学习,paddlepaddle)