计算机视觉研究院总结了算法50经典面试题

计算机视觉研究院专栏

作者:Edison_G

有兴趣的同学请学会面试答题!祝大家都可以拿到心仪的Offer!

1、请详细说说支持向量机(support vector machine,SVM)的原理

支持向量机,因其英文名为support vector machine,故一般简称SVM,通俗来讲,它是一种二类分类模型,其基本模型定义为特征空间上的间隔最大的线性分类器,其学习策略便是间隔最大化,最终可转化为一个凸二次规划问题的求解。

2、哪些机器学习算法不需要做归一化处理?

在实际应用中,需要归一化的模型:
1.基于距离计算的模型:KNN。
2.通过梯度下降法求解的模型:线性回归、逻辑回归、支持向量机、神经网络。
但树形模型不需要归一化,因为它们不关心变量的值,而是关心变量的分布和变量之间的条件概率,如决策树、随机森林(Random Forest)。

3、树形结构为什么不需要归一化?

因为数值缩放不影响分裂点位置,对树模型的结构不造成影响。
按照特征值进行排序的,排序的顺序不变,那么所属的分支以及分裂点就不会有不同。而且,树模型是不能进行梯度下降的,因为构建树模型(回归树)寻找最优点时是通过寻找最优分裂点完成的,因此树模型是阶跃的,阶跃点是不可导的,并且求导没意义,也就不需要归一化。

4、在k-means或kNN,我们常用欧氏距离来计算最近的邻居之间的距离,有时也用曼哈顿距离,请对比下这两种距离的差别

欧氏距离,最常见的两点之间或多点之间的距离表示法,又称之为欧几里得度量,它定义于欧几里得空间中。

5、数据归一化(或者标准化,注意归一化和标准化不同)的原因

能不归一化最好不归一化,之所以进行数据归一化是因为各维度的量纲不相同。而且需要看情况进行归一化。
有些模型在各维度进行了不均匀的伸缩后,最优解与原来不等价(如SVM)需要归一化。
有些模型伸缩有与原来等价,如:LR则不用归一化,但是实际中往往通过迭代求解模型参数,如果目标函数太扁(想象一下很扁的高斯模型)迭代算法会发生不收敛的情况,所以最好进行数据归一化。

6、请简要说说一个完整机器学习项目的流程

抽象成数学问题
明确问题是进行机器学习的第一步。机器学习的训练过程通常都是一件非常耗时的事情,胡乱尝试时间成本是非常高的。
这里的抽象成数学问题,指的我们明确我们可以获得什么样的数据,目标是一个分类还是回归或者是聚类的问题,如果都不是的话,如果划归为其中的某类问题。

获取数据
数据决定了机器学习结果的上限,而算法只是尽可能逼近这个上限。
数据要有代表性,否则必然会过拟合。
而且对于分类问题,数据偏斜不能过于严重,不同类别的数据数量不要有数个数量级的差距。
而且还要对数据的量级有一个评估,多少个样本,多少个特征,可以估算出其对内存的消耗程度,判断训练过程中内存是否能够放得下。如果放不下就得考虑改进算法或者使用一些降维的技巧了。如果数据量实在太大,那就要考虑分布式了。

特征预处理与特征选择
良好的数据要能够提取出良好的特征才能真正发挥效力。

7、逻辑斯蒂回归为什么要对特征进行离散化

① 非线性!非线性!非线性!逻辑回归属于广义线性模型,表达能力受限;单变量离散化为N个后,每个变量有单独的权重,相当于为模型引入了非线性,能够提升模型表达能力,加大拟合;离散特征的增加和减少都很容易,易于模型的快速迭代; 
② 速度快!速度快!速度快!稀疏向量内积乘法运算速度快,计算结果方便存储,容易扩展; 
③ 鲁棒性!鲁棒性!鲁棒性!离散化后的特征对异常数据有很强的鲁棒性:比如一个特征是年龄>30是1,否则0。如果特征没有离散化,一个异常数据“年龄300岁”会给模型造成很大的干扰; 
④ 方便交叉与特征组合:离散化后可以进行特征交叉,由M+N个变量变为M*N个变量,进一步引入非线性,提升表达能力; 
⑤ 稳定性:特征离散化后,模型会更稳定,比如如果对用户年龄离散化,20-30作为一个区间,不会因为一个用户年龄长了一岁就变成一个完全不同的人。当然处于区间相邻处的样本会刚好相反,所以怎么划分区间是门学问; 
⑥ 简化模型:特征离散化以后,起到了简化了逻辑回归模型的作用,降低了模型过拟合的风险。

8、简单介绍下LR

把LR从头到脚都给讲一遍。建模,现场数学推导,每种解法的原理,正则化,LR和maxent模型啥关系。有不少会背答案的人,问逻辑细节就糊涂了。
原理都会? 那就问工程,并行化怎么做,有几种并行化方式,读过哪些开源的实现。还会,那就准备收了吧,顺便逼问LR模型发展历史。

9、overfitting怎么解决

overfitting就是过拟合, 其直观的表现如下图所示,随着训练过程的进行,模型复杂度增加,在training data上的error渐渐减小,但是在验证集上的error却反而渐渐增大——因为训练出来的网络过拟合了训练集, 对训练集外的数据却不work, 这称之为泛化(generalization)性能不好。泛化性能是训练的效果评价中的首要目标,没有良好的泛化,就等于南辕北辙, 一切都是无用功。

10、LR和SVM的联系与区别解析一

LR和SVM都可以处理分类问题,且一般都用于处理线性二分类问题(在改进的情况下可以处理多分类问题) 
区别: 
1、LR是参数模型,svm是非参数模型,linear和rbf则是针对数据线性可分和不可分的区别;
2、从目标函数来看,区别在于逻辑回归采用的是logistical loss,SVM采用的是hinge loss,这两个损失函数的目的都是增加对分类影响较大的数据点的权重,减少与分类关系较小的数据点的权重。 
3、SVM的处理方法是只考虑support vectors,也就是和分类最相关的少数点,去学习分类器。而逻辑回归通过非线性映射,大大减小了离分类平面较远的点的权重,相对提升了与分类最相关的数据点的权重。 

4、逻辑回归相对来说模型更简单,好理解,特别是大规模线性分类时比较方便。而SVM的理解和优化相对来说复杂一些,SVM转化为对偶问题后,分类只需要计算与少数几个支持向量的距离,这个在进行复杂核函数计算时优势很明显,能够大大简化模型和计算。 

5、logic 能做的 svm能做,但可能在准确率上有问题,svm能做的logic有的做不了。

11、什么是熵

从名字上来看,熵给人一种很玄乎,不知道是啥的感觉。其实,熵的定义很简单,即用来表示随机变量的不确定性。之所以给人玄乎的感觉,大概是因为为何要取这样的名字,以及怎么用。
熵的概念最早起源于物理学,用于度量一个热力学系统的无序程度。在信息论里面,熵是对不确定性的测量。

12、说说梯度下降法

什么是梯度下降法
经常在机器学习中的优化问题中看到一个算法,即梯度下降法,那到底什么是梯度下降法呢?
维基百科给出的定义是梯度下降法(Gradient descent)是一个一阶最优化算法,通常也称为最速下降法。要使用梯度下降法找到一个函数的局部极小值,必须向函数上当前点对应梯度(或者是近似梯度)的反方向的规定步长距离点进行迭代搜索。如果相反地向梯度正方向迭代进行搜索,则会接近函数的局部极大值点;这个过程则被称为梯度上升法。

13、牛顿法和梯度下降法有什么不同?

牛顿法(Newton's method)
牛顿法是一种在实数域和复数域上近似求解方程的方法。方法使用函数f (x)的泰勒级数的前面几项来寻找方程f (x) = 0的根。牛顿法最大的特点就在于它的收敛速度很快。

14、熵、联合熵、条件熵、相对熵、互信息的定义

为了更好的理解,需要了解的概率必备知识有:
大写字母X表示随机变量,小写字母x表示随机变量X的某个具体的取值;
P(X)表示随机变量X的概率分布,P(X,Y)表示随机变量X、Y的联合概率分布,P(Y|X)表示已知随机变量X的情况下随机变量Y的条件概率分布;
p(X = x)表示随机变量X取某个具体值的概率,简记为p(x);
p(X = x, Y = y) 表示联合概率,简记为p(x,y),p(Y = y|X = x)表示条件概率,简记为p(y|x),且有:p(x,y) = p(x) * p(y|x)。

15、说说你知道的核函数

计算机视觉研究院总结了算法50经典面试题_第1张图片

16、什么是拟牛顿法(Quasi-Newton Methods)?

拟牛顿法是求解非线性优化问题最有效的方法之一,于20世纪50年代由美国Argonne国家实验室的物理学家W.C.Davidon所提出来。Davidon设计的这种算法在当时看来是非线性优化领域最具创造性的发明之一。不久R. Fletcher和M. J. D. Powell证实了这种新的算法远比其他方法快速和可靠,使得非线性优化这门学科在一夜之间突飞猛进。

拟牛顿法的本质思想是改善牛顿法每次需要求解复杂的Hessian矩阵的逆矩阵的缺陷,它使用正定矩阵来近似Hessian矩阵的逆,从而简化了运算的复杂度。拟牛顿法和最速下降法一样只要求每一步迭代时知道目标函数的梯度。通过测量梯度的变化,构造一个目标函数的模型使之足以产生超线性收敛性。这类方法大大优于最速下降法,尤其对于困难的问题。

17、kmeans的复杂度?

时间复杂度:O(tKmn),其中,t为迭代次数,K为簇的数目,m为记录数(也可认为是样本数),n为维数
空间复杂度:O((m+K)n),其中,K为簇的数目,m为记录数(也可认为是样本数),n为维数

18、请说说随机梯度下降法的问题和挑战?

计算机视觉研究院总结了算法50经典面试题_第2张图片 19、说说共轭梯度法?

共轭梯度法是介于梯度下降法(最速下降法)与牛顿法之间的一个方法,它仅需利用一阶导数信息,但克服了梯度下降法收敛慢的缺点,又避免了牛顿法需要存储和计算Hessian矩阵并求逆的缺点,共轭梯度法不仅是解决大型线性方程组最有用的方法之一,也是解大型非线性最优化最有效的算法之一。在各种优化算法中,共轭梯度法是非常重要的一种。其优点是所需存储量小,具有逐步收敛性,稳定性高,而且不需要任何外来参数。

20、对所有优化问题来说, 有没有可能找到比現在已知算法更好的算法?

没有免费的午餐定理:
对于训练样本(黑点),不同的算法A/B在不同的测试样本(白点)中有不同的表现,这表示:对于一个学习算法A,若它在某些问题上比学习算法 B更好,则必然存在一些问题,在那里B比A好。
也就是说:对于所有问题,无论学习算法A多聪明,学习算法 B多笨拙,它们的期望性能相同。
但是:没有免费午餐定理假设所有问题出现几率相同,实际应用中,不同的场景,会有不同的问题分布,所以,在优化算法时,针对具体问题进行分析,是算法优化的核心所在。

21、什么是最大熵

熵是随机变量不确定性的度量,不确定性越大,熵值越大;若随机变量退化成定值,熵为0。如果没有外界干扰,随机变量总是趋向于无序,在经过足够时间的稳定演化,它应该能够达到的最大程度的熵。 

为了准确的估计随机变量的状态,我们一般习惯性最大化熵,认为在所有可能的概率模型(分布)的集合中,熵最大的模型是最好的模型。换言之,在已知部分知识的前提下,关于未知分布最合理的推断就是符合已知知识最不确定或最随机的推断,其原则是承认已知事物(知识),且对未知事物不做任何假设,没有任何偏见

22、LR与线性回归的区别与联系

LR工业上一般指Logistic Regression(逻辑回归)而不是Linear Regression(线性回归). LR在线性回归的实数范围输出值上施加sigmoid函数将值收敛到0~1范围, 其目标函数也因此从差平方和函数变为对数损失函数, 以提供最优化所需导数(sigmoid函数是softmax函数的二元特例, 其导数均为函数值的f*(1-f)形式)。

请注意, LR往往是解决二元0/1分类问题的, 只是它和线性回归耦合太紧, 不自觉也冠了个回归的名字(马甲无处不在). 若要求多元分类,就要把sigmoid换成大名鼎鼎的softmax了。

23、简单说下有监督学习和无监督学习的区别

有监督学习:对具有标记的训练样本进行学习,以尽可能对训练样本集外的数据进行分类预测。(LR,SVM,BP,RF,GBDT)
无监督学习:对未标记的样本进行训练学习,比发现这些样本中的结构知识。(KMeans,PCA)

24、请问(决策树、Random Forest、Boosting、Adaboot)GBDT和XGBoost的区别是什么?

集成学习的集成对象是学习器. Bagging和Boosting属于集成学习的两类方法. Bagging方法有放回地采样同数量样本训练每个学习器, 然后再一起集成(简单投票); Boosting方法使用全部样本(可调权重)依次训练每个学习器, 迭代集成(平滑加权).

决策树属于最常用的学习器, 其学习过程是从根建立树, 也就是如何决策叶子节点分裂. ID3/C4.5决策树用信息熵计算最优分裂, CART决策树用基尼指数计算最优分裂, xgboost决策树使用二阶泰勒展开系数计算最优分裂。

25、机器学习中的正则化到底是什么意思?

经常在各种文章或资料中看到正则化,比如说,一般的目标函数都包含下面两项

计算机视觉研究院总结了算法50经典面试题_第3张图片

其中,误差/损失函数鼓励我们的模型尽量去拟合训练数据,使得最后的模型会有比较少的 bias。而正则化项则鼓励更加简单的模型。因为当模型简单之后,有限数据拟合出来结果的随机性比较小,不容易过拟合,使得最后模型的预测更加稳定。
但一直没有一篇好的文章理清到底什么是正则化?
说到正则化,得先从过拟合问题开始谈起。

26、说说常见的损失函数?

对于给定的输入X,由f(X)给出相应的输出Y,这个输出的预测值f(X)与真实值Y可能一致也可能不一致(要知道,有时损失或误差是不可避免的),用一个损失函数来度量预测错误的程度。损失函数记为L(Y, f(X)),用来估量你模型的预测值f(x)与真实值Y的不一致程度。

27、为什么xgboost要用泰勒展开,优势在哪里?

xgboost使用了一阶和二阶偏导, 二阶导数有利于梯度下降的更快更准. 使用泰勒展开取得函数做自变量的二阶导数形式, 可以在不选定损失函数具体形式的情况下, 仅仅依靠输入数据的值就可以进行叶子分裂优化计算, 本质上也就把损失函数的选取和模型算法优化/参数选择分开了. 这种去耦合增加了xgboost的适用性, 使得它按需选取损失函数, 可以用于分类, 也可以用于回归。

28、协方差和相关性有什么区别?

相关性是协方差的标准化格式。协方差本身很难做比较。例如:如果我们计算工资($)和年龄(岁)的协方差,因为这两个变量有不同的度量,所以我们会得到不能做比较的不同的协方差。

29、xgboost如何寻找最优特征?是有放回还是无放回的呢?

xgboost在训练的过程中给出各个特征的增益评分,最大增益的特征会被选出来作为分裂依据, 从而记忆了每个特征对在模型训练时的重要性 -- 从根到叶子中间节点涉及某特征的次数作为该特征重要性排序。

30、谈谈判别式模型和生成式模型?

判别方法:由数据直接学习决策函数 Y = f(X),或者由条件分布概率 P(Y|X)作为预测模型,即判别模型。
生成方法:由数据学习联合概率密度分布函数 P(X,Y),然后求出条件概率分布P(Y|X)作为预测的模型,即生成模型。
由生成模型可以得到判别模型,但由判别模型得不到生成模型。
常见的判别模型有:K近邻、SVM、决策树、感知机、线性判别分析(LDA)、线性回归、传统的神经网络、逻辑斯蒂回归、boosting、条件随机场
常见的生成模型有:朴素贝叶斯、隐马尔可夫模型、高斯混合模型、文档主题生成模型(LDA)、限制玻尔兹曼机

31、线性分类器与非线性分类器的区别以及优劣

线性和非线性是针对,模型参数和输入特征来讲的;比如输入x,模型y=ax+ax^2那么就是非线性模型,如果输入是x和X^2则模型是线性的。
线性分类器可解释性好,计算复杂度较低,不足之处是模型的拟合效果相对弱些。
非线性分类器效果拟合能力较强,不足之处是数据量不足容易过拟合、计算复杂度高、可解释性不好。
常见的线性分类器有:LR,贝叶斯分类,单层感知机、线性回归
常见的非线性分类器:决策树、RF、GBDT、多层感知机
SVM两种都有(看线性核还是高斯核)

32、L1和L2的区别

L1范数(L1 norm)是指向量中各个元素绝对值之和,也有个美称叫“稀疏规则算子”(Lasso regularization)。 
比如 向量A=[1,-1,3], 那么A的L1范数为 |1|+|-1|+|3|.
简单总结一下就是: 
L1范数: 为x向量各个元素绝对值之和。 
L2范数: 为x向量各个元素平方和的1/2次方,L2范数又称Euclidean范数或者Frobenius范数 
Lp范数: 为x向量各个元素绝对值p次方和的1/p次方

33、L1和L2正则先验分别服从什么分布

面试中遇到的,L1和L2正则先验分别服从什么分布,L1是拉普拉斯分布,L2是高斯分布。

34、简单介绍下logistics回归?

逻辑回归(Logistic Regression)是机器学习中的一种分类模型,由于算法的简单和高效,在实际中应用非常广泛。
比如在实际工作中,我们可能会遇到如下问题:
预测一个用户是否点击特定的商品
判断用户的性别
预测用户是否会购买给定的品类
判断一条评论是正面的还是负面的
这些都可以看做是分类问题,更准确地,都可以看做是二分类问题。要解决这些问题,通常会用到一些已有的分类算法,比如逻辑回归,或者支持向量机。它们都属于有监督的学习,因此在使用这些算法之前,必须要先收集一批标注好的数据作为训练集。有些标注可以从log中拿到(用户的点击,购买),有些可以从用户填写的信息中获得(性别),也有一些可能需要人工标注(评论情感极性)。

35、说一下Adaboost,权值更新公式。当弱分类器是Gm时,每个样本的的权重是w1,w2...,请写出最终的决策公式。

给定一个训练数据集T={(x1,y1), (x2,y2)…(xN,yN)}

36、经常在网上搜索东西的朋友知道,当你不小心输入一个不存在的单词时,搜索引擎会提示你是不是要输入某一个正确的单词,比如当你在Google中输入“Julw”时,系统会猜测你的意图:是不是要搜索“July”

计算机视觉研究院总结了算法50经典面试题_第4张图片

用户输入一个单词时,可能拼写正确,也可能拼写错误。如果把拼写正确的情况记做c(代表correct),拼写错误的情况记做w(代表wrong),那么"拼写检查"要做的事情就是:在发生w的情况下,试图推断出c。换言之:已知w,然后在若干个备选方案中,找出可能性最大的那个c

37、为什么朴素贝叶斯如此“朴素”?

因为它假定所有的特征在数据集中的作用是同样重要和独立的。正如我们所知,这个假设在现实世界中是很不真实的,因此,说朴素贝叶斯真的很“朴素”。
朴素贝叶斯模型(Naive Bayesian Model)的朴素(Naive)的含义是"很简单很天真"地假设样本特征彼此独立. 这个假设现实中基本上不存在, 但特征相关性很小的实际情况还是很多的, 所以这个模型仍然能够工作得很好。

38、请大致对比下plsa和LDA的区别

计算机视觉研究院总结了算法50经典面试题_第5张图片

39、请详细说说EM算法

到底什么是EM算法呢?Wikipedia给的解释是:
最大期望算法(Expectation-maximization algorithm,又译为期望最大化算法),是在概率模型中寻找参数最大似然估计或者最大后验估计的算法,其中概率模型依赖于无法观测的隐性变量。

40、KNN中的K如何选取的?

关于什么是KNN,可以查看此文:《从K近邻算法、距离度量谈到KD树、SIFT+BBF算法》(链接:blog.csdn.net/v_july_v/)。KNN中的K值选取对K近邻算法的结果会产生重大影响。如李航博士的一书「统计学习方法」上所说:如果选择较小的K值,就相当于用较小的领域中的训练实例进行预测,“学习”近似误差会减小,只有与输入实例较近或相似的训练实例才会对预测结果起作用,与此同时带来的问题是“学习”的估计误差会增大,换句话说,K值的减小就意味着整体模型变得复杂,容易发生过拟合;
如果选择较大的K值,就相当于用较大领域中的训练实例进行预测,其优点是可以减少学习的估计误差,但缺点是学习的近似误差会增大。这时候,与输入实例较远(不相似的)训练实例也会对预测器作用,使预测发生错误,且K值的增大就意味着整体的模型变得简单。
K=N,则完全不足取,因为此时无论输入实例是什么,都只是简单的预测它属于在训练实例中最多的累,模型过于简单,忽略了训练实例中大量有用信息。
在实际应用中,K值一般取一个比较小的数值,例如采用交叉验证法(简单来说,就是一部分样本做训练集,一部分做测试集)来选择最优的K值。

41、防止过拟合的方法

过拟合的原因是算法的学习能力过强;一些假设条件(如样本独立同分布)可能是不成立的;训练样本过少不能对整个空间进行分布估计。 
处理方法:
1 早停止:如在训练中多次迭代后发现模型性能没有显著提高就停止训练
2 数据集扩增:原有数据增加、原有数据加随机噪声、重采样
3 正则化,正则化可以限制模型的复杂度
4 交叉验证
5 特征选择/特征降维
6 创建一个验证集是最基本的防止过拟合的方法。我们最终训练得到的模型目标是要在验证集上面有好的表现,而不训练集。

42、机器学习中,为何要经常对数据做归一化

机器学习模型被互联网行业广泛应用,如排序(参见:排序学习实践cnblogs.com/LBSer/p/443)、推荐、反作弊、定位(参见:基于朴素贝叶斯的定位算法cnblogs.com/LBSer/p/402)等。
一般做机器学习应用的时候大部分时间是花费在特征处理上,其中很关键的一步就是对特征数据进行归一化。
为什么要归一化呢?很多同学并未搞清楚,维基百科给出的解释:1)归一化后加快了梯度下降求最优解的速度;2)归一化有可能提高精度。

43、什么最小二乘法?

我们口头中经常说:一般来说,平均来说。如平均来说,不吸烟的健康优于吸烟者,之所以要加“平均”二字,是因为凡事皆有例外,总存在某个特别的人他吸烟但由于经常锻炼所以他的健康状况可能会优于他身边不吸烟的朋友。而最小二乘法的一个最简单的例子便是算术平均。
最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。

44、梯度下降法找到的一定是下降最快的方向么?

梯度下降法并不一定是全局下降最快的方向,它只是目标函数在当前的点的切平面(当然高维问题不能叫平面)上下降最快的方向。在practical implementation中,牛顿方向(考虑海森矩阵)才一般被认为是下降最快的方向,可以达到superlinear的收敛速度。梯度下降类的算法的收敛速度一般是linear甚至sublinear的(在某些带复杂约束的问题)。

45、简单说说贝叶斯定理的

计算机视觉研究院总结了算法50经典面试题_第6张图片

46、怎么理解决策树、xgboost能处理缺失值?而有的模型(svm)对缺失值比较敏感。

本题解析来源:zhihu.com/question/5823
首先从两个角度解释你的困惑:
工具包自动处理数据缺失不代表具体的算法可以处理缺失项
对于有缺失的数据:以决策树为原型的模型优于依赖距离度量的模型
回答中也会介绍树模型,如随机森林(Random Forest)和xgboost如何处理缺失值。文章最后总结了在有缺失值时选择模型的小建议。

47、请举例说明什么是标准化、归一化

一、标准化(standardization)
简单来说,标准化是依照特征矩阵的列处理数据,其通过求z-score的方法,将样本的特征值转换到同一量纲下。
公式一般为:(X-mean)/std,其中mean是平均值,std是方差。
从公式我们可以看出,标准化操作(standardization)是将数据按其属性(按列)减去平均值,然后再除以方差。
这个过程从几何上理解就是,先将坐标轴零轴平移到均值这条线上,然后再进行一个缩放,涉及到的就是平移和缩放两个动作。这样处理以后的结果就是,对于每个属性(每列)来说,所有数据都聚集在0附近,方差为1。计算时对每个属性/每列分别进行。

48、随机森林如何处理缺失值?

众所周知,机器学习中处理缺失值的方法有很多,然而,由题目“随机森林如何处理缺失值”可知,问题关键在于随机森林如何处理,所以先简要介绍下随机森林吧。
随机森林是由很多个决策树组成的,首先要建立Bootstrap数据集,即从原始的数据中有放回地随机选取一些,作为新的数据集,新数据集中会存在重复的数据,然后对每个数据集构造一个决策树,但是不是直接用所有的特征来建造决策树,而是对于每一步,都从中随机的选择一些特征,来构造决策树,这样我们就构建了多个决策树,组成随机森林,把数据输入各个决策树中,看一看每个决策树的判断结果,统计一下所有决策树的预测结果,Bagging整合结果,得到最终输出。
那么,随机森林中如何处理缺失值呢?根据随机森林创建和训练的特点,随机森林对缺失值的处理还是比较特殊的。

49、随机森林如何评估特征重要性?

衡量变量重要性的方法有两种,Decrease GINI 和 Decrease Accuracy:

1) Decrease GINI: 

对于分类问题(将某个样本划分到某一类),也就是离散变量问题,CART使用Gini值作为评判标准。定义为Gini=1-∑(P(i)*P(i)),P(i)为当前节点上数据集中第i类样本的比例。例如:分为2类,当前节点上有100个样本,属于第一类的样本有70个,属于第二类的样本有30个,则Gini=1-0.7×07-0.3×03=0.42,可以看出,类别分布越平均,Gini值越大,类分布越不均匀,Gini值越小。在寻找最佳的分类特征和阈值时,评判标准为:argmax(Gini-GiniLeft-GiniRight),即寻找最佳的特征f和阈值th,使得当前节点的Gini值减去左子节点的Gini和右子节点的Gini值最大。

对于回归问题,相对更加简单,直接使用argmax(Var-VarLeft-VarRight)作为评判标准,即当前节点训练集的方差Var减去减去左子节点的方差VarLeft和右子节点的方差VarRight值最大。

2) Decrease Accuracy:

对于一棵树Tb(x),我们用OOB样本可以得到测试误差1;然后随机改变OOB样本的第j列:保持其他列不变,对第j列进行随机的上下置换,得到误差2。至此,我们可以用误差1-误差2来刻画变量j的重要性。基本思想就是,如果一个变量j足够重要,那么改变它会极大的增加测试误差;反之,如果改变它测试误差没有增大,则说明该变量不是那么的重要。

50、请说说Kmeans的优化?

解析一
k-means:在大数据的条件下,会耗费大量的时间和内存。 
优化k-means的建议: 
1、减少聚类的数目K。因为,每个样本都要跟类中心计算距离。 
2、减少样本的特征维度。比如说,通过PCA等进行降维。 
3、考察其他的聚类算法,通过选取toy数据,去测试不同聚类算法的性能。 
4、hadoop集群,K-means算法是很容易进行并行计算的。

/End.

我们开创“计算机视觉协会”知识星球一年有余,也得到很多同学的认可,我们定时会推送实践型内容与大家分享,在星球里的同学可以随时提问,随时提需求,我们都会及时给予回复及给出对应的答复。

如果想加入我们“计算机视觉研究院”,请扫二维码加入我们。我们会按照你的需求将你拉入对应的学习群!

计算机视觉研究院主要涉及深度学习领域,主要致力于人脸检测、人脸识别,多目标检测、目标跟踪、图像分割等研究方向。研究院接下来会不断分享最新的论文算法新框架,我们这次改革不同点就是,我们要着重”研究“。之后我们会针对相应领域分享实践过程,让大家真正体会摆脱理论的真实场景,培养爱动手编程爱动脑思考的习惯!

计算机视觉研究院

长按扫描二维码
关注我们 获取更多资讯

你可能感兴趣的:(算法,决策树,dbcp,机器学习,人工智能)