人工智能基础 作业6

本次来实现XO图形的识别

数据集

数据集要按照一定比例自行划分好训练集training_set和测试集test_set

人工智能基础 作业6_第1张图片

人工智能基础 作业6_第2张图片

代码

import torch
from torch import nn, optim
from torch.utils.data import DataLoader, Dataset
from torchvision import datasets, transforms

# 模型构建
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 9, 3)
        self.maxpool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(9, 5, 3)
        self.relu = nn.ReLU()
        self.fc1 = nn.Linear(27 * 27 * 5, 1200)
        self.fc2 = nn.Linear(1200, 64)
        self.fc3 = nn.Linear(64, 2)

    def forward(self, x):
        x = self.maxpool(self.relu(self.conv1(x)))
        x = self.maxpool(self.relu(self.conv2(x)))
        x = x.view(-1, 27 * 27 * 5)
        x = self.relu(self.fc1(x))
        x = self.relu(self.fc2(x))
        x = self.fc3(x)
        return x

# 数据集加载
data_loader = DataLoader(
    dataset=datasets.ImageFolder(
        root='training_data_sm',
        transform=transforms.Compose([
            transforms.Grayscale(),
            transforms.ToTensor()
        ])
    ),
    batch_size=64,
    shuffle=True
)

# 实例化模型
model = Net()
# 损失函数
criterion = torch.nn.CrossEntropyLoss()
# 参数优化器
optimizer = optim.SGD(model.parameters(), lr=0.1)

# 开始训练
epochs = 10
for epoch in range(epochs):
    running_loss = 0.0
    for i, data in enumerate(data_loader):
        # 获取数据
        images, label = data  # images.shape = (batch, 1, w, h)
        # 推理
        out = model(images)
        # 计算损失
        loss = criterion(out, label)
        # 清空梯度
        optimizer.zero_grad()
        # 反向传播
        loss.backward()
        # 更新参数
        optimizer.step()
        # 计算平均损失
        running_loss += loss.item()
        if (i + 1) % 10 == 0:
            print('[%d  %5d]   loss: %.3f' % (epoch + 1, i + 1, running_loss / 100))
            running_loss = 0.0
print('finished train')
# 保存模型
torch.save(model, 'model_name.pth')  # 保存的是模型, 不止是w和b权重值

 训练

[1     10]   loss: 0.069
[1     20]   loss: 0.068
[1     30]   loss: 0.065
[2     10]   loss: 0.057
[2     20]   loss: 0.038
[2     30]   loss: 0.016
[3     10]   loss: 0.009
[3     20]   loss: 0.007
[3     30]   loss: 0.005
[4     10]   loss: 0.037
[4     20]   loss: 0.021
[4     30]   loss: 0.007
[5     10]   loss: 0.003
[5     20]   loss: 0.003
[5     30]   loss: 0.002
[6     10]   loss: 0.002
[6     20]   loss: 0.001
[6     30]   loss: 0.002
[7     10]   loss: 0.001
[7     20]   loss: 0.001
[7     30]   loss: 0.001
[8     10]   loss: 0.000
[8     20]   loss: 0.002
[8     30]   loss: 0.000
[9     10]   loss: 0.000
[9     20]   loss: 0.001
[9     30]   loss: 0.000
[10     10]   loss: 0.000
[10     20]   loss: 0.000
[10     30]   loss: 0.001
finished train

 测试

images, labels = data_loader.__iter__().__next__()
# 读取一张图片 images[0],测试
print("labels[0] truth:\t", labels[0])
x = images[0]
# 读取模型
model_load = torch.load('model_name.pth')
predicted = torch.max(model_load(x), 1)
print("labels[0] predict:\t", predicted.indices)
img = images[0].data.squeeze().numpy()  # 将输出转换为图片的格式
plt.imshow(img, cmap='gray')
plt.show()

人工智能基础 作业6_第3张图片

 计算模型的准确率

data_loader_test = DataLoader(
    dataset=datasets.ImageFolder(
        root='test_data_sm',
        transform=transforms.Compose([
            transforms.Grayscale(),
            transforms.ToTensor()
        ])
    ),
    batch_size=64,
    shuffle=True
)
# 读取模型
model_load = torch.load('model_name.pth')
correct = 0
total = 0
with torch.no_grad():  # 进行评测的时候网络不更新梯度
    for data in data_loader_test:  # 读取测试集
        images, labels = data
        outputs = model_load(images)
        _, predicted = torch.max(outputs.data, 1)  # 取出 最大值的索引 作为 分类结果
        total += labels.size(0)  # labels 的长度
        correct += (predicted == labels).sum().item()  # 预测正确的数目
print('Accuracy of the network on the  test images: %f %%' % (100. * correct / total))

Accuracy of the network on the  test images: 99.550000 %

查看训练好的模型特征图 

# 看看每层的 卷积核 长相,特征图 长相
# 获取网络结构的特征矩阵并可视化
import torch
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
from torchvision import transforms, datasets
import torch.nn as nn
from torch.utils.data import DataLoader

#  定义图像预处理过程(要与网络模型训练过程中的预处理过程一致)

transforms = transforms.Compose([
    transforms.ToTensor(),  # 把图片进行归一化,并把数据转换成Tensor类型
    transforms.Grayscale(1)  # 把图片 转为灰度图
])
path = r'training_data_sm'
data_train = datasets.ImageFolder(path, transform=transforms)
data_loader = DataLoader(data_train, batch_size=64, shuffle=True)
for i, data in enumerate(data_loader):
    images, labels = data
    print(images.shape)
    print(labels.shape)
    break


class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 9, 3)  # in_channel , out_channel , kennel_size , stride
        self.maxpool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(9, 5, 3)  # in_channel , out_channel , kennel_size , stride

        self.relu = nn.ReLU()
        self.fc1 = nn.Linear(27 * 27 * 5, 1200)  # full connect 1
        self.fc2 = nn.Linear(1200, 64)  # full connect 2
        self.fc3 = nn.Linear(64, 2)  # full connect 3

    def forward(self, x):
        outputs = []
        x = self.conv1(x)
        outputs.append(x)
        x = self.relu(x)
        outputs.append(x)
        x = self.maxpool(x)
        outputs.append(x)
        x = self.conv2(x)

        x = self.relu(x)

        x = self.maxpool(x)

        x = x.view(-1, 27 * 27 * 5)
        x = self.relu(self.fc1(x))
        x = self.relu(self.fc2(x))
        x = self.fc3(x)
        return outputs


model1 = torch.load('model_name.pth')

# 打印出模型的结构
print(model1)

x = images[0]

# forward正向传播过程
out_put = model1(x)

for feature_map in out_put:
    # [N, C, H, W] -> [C, H, W]    维度变换
    im = np.squeeze(feature_map.detach().numpy())
    # [C, H, W] -> [H, W, C]
    im = np.transpose(im, [1, 2, 0])
    print(im.shape)

    # show 9 feature maps
    plt.figure()
    for i in range(9):
        ax = plt.subplot(3, 3, i + 1)  # 参数意义:3:图片绘制行数,5:绘制图片列数,i+1:图的索引
        # [H, W, C]
        # 特征矩阵每一个channel对应的是一个二维的特征矩阵,就像灰度图像一样,channel=1
        # plt.imshow(im[:, :, i])
        plt.imshow(im[:, :, i], cmap='gray')
    plt.show()

卷积后的特征图人工智能基础 作业6_第4张图片

激活后的特征图人工智能基础 作业6_第5张图片

池化后的特征图人工智能基础 作业6_第6张图片

 查看训练好的模型的卷积核

# 看看每层的 卷积核 长相,特征图 长相
# 获取网络结构的特征矩阵并可视化
import torch
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
from torchvision import transforms, datasets
import torch.nn as nn
from torch.utils.data import DataLoader

plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号 #有中文出现的情况,需要u'内容
#  定义图像预处理过程(要与网络模型训练过程中的预处理过程一致)
transforms = transforms.Compose([
    transforms.ToTensor(),  # 把图片进行归一化,并把数据转换成Tensor类型
    transforms.Grayscale(1)  # 把图片 转为灰度图
])
path = r'training_data_sm'
data_train = datasets.ImageFolder(path, transform=transforms)
data_loader = DataLoader(data_train, batch_size=64, shuffle=True)
for i, data in enumerate(data_loader):
    images, labels = data
    # print(images.shape)
    # print(labels.shape)
    break


class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 9, 3)  # in_channel , out_channel , kennel_size , stride
        self.maxpool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(9, 5, 3)  # in_channel , out_channel , kennel_size , stride

        self.relu = nn.ReLU()
        self.fc1 = nn.Linear(27 * 27 * 5, 1200)  # full connect 1
        self.fc2 = nn.Linear(1200, 64)  # full connect 2
        self.fc3 = nn.Linear(64, 2)  # full connect 3

    def forward(self, x):
        outputs = []
        x = self.maxpool(self.relu(self.conv1(x)))
        # outputs.append(x)
        x = self.maxpool(self.relu(self.conv2(x)))
        outputs.append(x)
        x = x.view(-1, 27 * 27 * 5)
        x = self.relu(self.fc1(x))
        x = self.relu(self.fc2(x))
        x = self.fc3(x)
        return outputs


model1 = torch.load('model_name.pth')

x = images[0]

# forward正向传播过程
out_put = model1(x)

weights_keys = model1.state_dict().keys()
for key in weights_keys:
    print("key :", key)
    # 卷积核通道排列顺序 [kernel_number, kernel_channel, kernel_height, kernel_width]
    if key == "conv1.weight":
        weight_t = model1.state_dict()[key].numpy()
        print("weight_t.shape", weight_t.shape)
        k = weight_t[:, 0, :, :]  # 获取第一个卷积核的信息参数
        # show 9 kernel ,1 channel
        plt.figure()

        for i in range(9):
            ax = plt.subplot(3, 3, i + 1)  # 参数意义:3:图片绘制行数,5:绘制图片列数,i+1:图的索引
            plt.imshow(k[i, :, :], cmap='gray')
            title_name = 'kernel' + str(i) + ',channel1'
            plt.title(title_name)
        plt.show()

    if key == "conv2.weight":
        weight_t = model1.state_dict()[key].numpy()
        print("weight_t.shape", weight_t.shape)
        k = weight_t[:, :, :, :]  # 获取第一个卷积核的信息参数
        print(k.shape)
        print(k)

        plt.figure()
        for c in range(9):
            channel = k[:, c, :, :]
            for i in range(5):
                ax = plt.subplot(2, 3, i + 1)  # 参数意义:3:图片绘制行数,5:绘制图片列数,i+1:图的索引
                plt.imshow(channel[i, :, :], cmap='gray')
                title_name = 'kernel' + str(i) + ',channel' + str(c)
                plt.title(title_name)
            plt.show()

人工智能基础 作业6_第7张图片

人工智能基础 作业6_第8张图片

你可能感兴趣的:(机器学习,人工智能,深度学习,pytorch)