keras基于CNN和序列标注的对联机器人

动手 #
“对对联”,我们可以看成是一个句子生成任务,可以用seq2seq完成
分析 #
然而,我们再细想一下就会发现,相对于一般的句子生成任务,“对对联”有规律得多:1、上联和下联的字数一样;2、上联和下联的每一个字几乎都有对应关系。如此一来,其实对对联可以直接看成一个序列标注任务,跟分词、命名实体识别等一样的做法即可。这便是本文的出发点。

说到这,其实本文就没有什么技术含量了,序列标注已经是再普通不过的任务了,远比一般的seq2seq来得简单。所谓序列标注,就是指输入一个向量序列,然后输出另外一个通常长度的向量序列,最后对这个序列的“每一帧”进行分类。相关概念来可以在《简明条件随机场CRF介绍(附带纯Keras实现)》一文进一步了解。

模型 #
本文直接边写代码边介绍模型。如果需要进一步了解背后的基础知识的读者,还可以参考《【中文分词系列】 4. 基于双向LSTM的seq2seq字标注》、《【中文分词系列】 6. 基于全卷积网络的中文分词》、《基于CNN和VAE的作诗机器人:随机成诗》。

我们所用的模型代码如下:

x_in = Input(shape=(None,))
x = x_in
x = Embedding(len(chars)+1, char_size)(x)
x = Dropout(0.25)(x)

x = gated_resnet(x)
x = gated_resnet(x)
x = gated_resnet(x)
x = gated_resnet(x)
x = gated_resnet(x)
x = gated_resnet(x)

x = Dense(len(chars)+1, activation='softmax')(x)

model = Model(x_in, x)
model.compile(loss='sparse_categorical_crossentropy',
              optimizer='adam')

其中gated_resnet是笔者定义的门卷积模块(在《基于CNN的阅读理解式问答模型:DGCNN》一文也介绍过这个模块):

def gated_resnet(x, ksize=3):
    # 门卷积 + 残差
    x_dim = K.int_shape(x)[-1]
    xo = Conv1D(x_dim*2, ksize, padding='same')(x)
    return Lambda(lambda x: x[0] * K.sigmoid(x[1][..., :x_dim]) \
                            + x[1][..., x_dim:] * K.sigmoid(-x[1][..., :x_dim]))([x, xo])

仅此而已~

就这样完了,剩下的都是数据预处理的事情了。当然,读者也可以尝试也可以把gated_resnet换成普通的双向LSTM,但我实验中发现双向LSTM并没有gated_resnet效果好,而且LSTM相对来说也更慢,所以LSTM在这里就被抛弃了。

效果 #
训练的数据集来自:https://github.com/wb14123/couplet-dataset,感谢作者的整理。

完整代码:https://github.com/bojone/seq2seq/blob/master/couplet_by_seq_tagging.py

训练过程:
对联机器人训练过程
对联机器人训练过程

部分效果:

上联:晚风摇树树还挺,下联:夜雨敲花花更香

上联:今天天气不错,下联:昨日人情无明

上联:鱼跃此时海,下联:鸟鸣何日人

上联:只有香如故,下联:不无月若新

上联:科学空间,下联:文明大中

看起来还是有点味道的。注意“晚风摇树树还挺”是训练集的上联,标准下联是“晨露润花花更红”,而模型给出来的是“夜雨敲花花更香”,说明模型并不是单纯地记住训练集的,还是有一定的理解能力;甚至我觉得模型对出来的下联更生动一些。

总的来说,基本的字的对应似乎都能做到,就缺乏一个整体感。总体效果没有下面两个好,但作为一个小玩具,应该能让人满意了。

微软对联:http://duilian.msra.cn/app/couplet.aspx
结语 #

改动后的python3 代码如下: https://github.com/PDDsa/py3-couplet_by_seq_tagging
欢迎star~~
cpu版TensorFlow 跑了2.5小时。结果还不错。

最后,也没有什么好总结的。我就是觉得这个对对联应该算是一个序列标注任务,所以就想着用一个序列标注的模型来试试看,结果感觉还行~当然,要做得更好,需要在模型上做些调整,还可以考虑引入Attention等,然后解码的时候,还需要引入更多的先验知识,保证结果符合我们对对联的要求。这些就留给有兴趣做下去的读者继续了。

本文转载自 : 地址:https://kexue.fm/archives/6270

你可能感兴趣的:(卷积,机器学习,深度学习,nlp,人工智能)