当前开源的SLAM方案汇总2021.02

感谢SLAMer前辈们不断的拼搏与进取,才有了现在的丰富的学习资料!

以下是至今SLAM开源代码的资料汇总,后续将会更新主流slam开源代码的注释版本,希望对研究SLAM的同学们有帮助。

PTAM

论文:Klein G, Murray D. Parallel tracking and mapping for small AR workspaces[C]//Mixed and Augmented Reality, 2007. ISMAR 2007. 6th IEEE and ACM International Symposium on. IEEE, 2007: 225-234.

代码:https://github.com/Oxford-PTAM/PTAM-GPL

作者其他研究:http://www.robots.ox.ac.uk/~gk/publications.html

 MonoSLAM

论文:Davison A J, Reid I D, Molton N D, et al. MonoSLAM: Real-time single camera SLAM[J]. IEEE transactions on pattern analysis and machine intelligence, 2007, 29(6): 1052-1067.

代码:https://github.com/hanmekim/SceneLib2

 KinectFusion

论文:Newcombe R A, Izadi S, Hilliges O, et al. KinectFusion: Real-time dense surface mapping and tracking[C]//2011 10th IEEE International Symposium on Mixed and Augmented Reality. IEEE, 2011: 127-136.

代码:https://github.com/chrdiller/KinectFusionApp

DVO-SLAM

论文:Kerl C, Sturm J, Cremers D. Dense visual SLAM for RGB-D cameras[C]//2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2013: 2100-2106.

代码 1:https://github.com/tum-vision/dvo_slam

代码 2:https://github.com/tum-vision/dvo

其他论文:

Kerl C, Sturm J, Cremers D. Robust odometry estimation for RGB-D cameras[C]//2013 IEEE international conference on robotics and automation. IEEE, 2013: 3748-3754.

Steinbrücker F, Sturm J, Cremers D. Real-time visual odometry from dense RGB-D images[C]//2011 IEEE international conference on computer vision workshops (ICCV Workshops). IEEE, 2011: 719-722.

LSD-SLAM

论文:Engel J, Schöps T, Cremers D. LSD-SLAM: Large-scale direct monocular SLAM[C]//European conference on computer vision. Springer, Cham, 2014: 834-849.

代码:https://github.com/tum-vision/lsd_slam

SVO

论文:Forster C, Pizzoli M, Scaramuzza D. SVO: Fast semi-direct monocular visual odometry[C]//2014 IEEE international conference on robotics and automation (ICRA). IEEE, 2014: 15-22.

代码:https://github.com/uzh-rpg/rpg_svo

Forster C, Zhang Z, Gassner M, et al. SVO: Semidirect visual odometry for monocular and multicamera systems[J]. IEEE Transactions on Robotics, 2016, 33(2): 249-265.

REMODE(单目概率稠密重建)

论文:Pizzoli M, Forster C, Scaramuzza D. REMODE: Probabilistic, monocular dense reconstruction in real time[C]//2014 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2014: 2609-2616.

原始开源代码:https://github.com/uzh-rpg/rpg_open_remode

与 ORB-SLAM2 结合版本:https://github.com/ayushgaud/ORB_SLAM2 https://github.com/ayushgaud/ORB_SLAM2

ROVIO

论文:Bloesch M, Omari S, Hutter M, et al. Robust visual inertial odometry using a direct EKF-based approach[C]//2015 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE, 2015: 298-304.

代码:https://github.com/ethz-asl/rovio

OKVIS

论文:Leutenegger S, Lynen S, Bosse M, et al. Keyframe-based visual–inertial odometry using nonlinear optimization[J]. The International Journal of Robotics Research, 2015, 34(3): 314-334.

代码:https://github.com/ethz-asl/okvis

DynamicFusion

论文:Newcombe R A, Fox D, Seitz S M. Dynamicfusion: Reconstruction and tracking of non-rigid scenes in real-time[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2015: 343-352.

代码:https://github.com/mihaibujanca/dynamicfusion

Kintinuous

论文:Whelan T, Kaess M, Johannsson H, et al. Real-time large-scale dense RGB-D SLAM with volumetric fusion[J]. The International Journal of Robotics Research, 2015, 34(4-5): 598-626.

代码:https://github.com/mp3guy/Kintinuous

ElasticReconstruction

论文:Choi S, Zhou Q Y, Koltun V. Robust reconstruction of indoor scenes[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015: 5556-5565.

代码:https://github.com/qianyizh/ElasticReconstruction

DPPTAM(单目稠密重建)

论文:Concha Belenguer A, Civera Sancho J. DPPTAM: Dense piecewise planar tracking and mapping from a monocular sequence[C]//Proc. IEEE/RSJ Int. Conf. Intell. Rob. Syst. 2015 (ART-2015-92153).

代码:https://github.com/alejocb/dpptam

ORB-SLAM2 单目半稠密建图

论文:Mur-Artal R, Tardós J D. Probabilistic Semi-Dense Mapping from Highly Accurate Feature-Based Monocular SLAM[C]//Robotics: Science and Systems. 2015, 2015.

代码:https://github.com/HeYijia/ORB_SLAM2

Map2DFusion(单目 SLAM 无人机图像拼接)

论文:Bu S, Zhao Y, Wan G, et al. Map2DFusion: Real-time incremental UAV image mosaicing based on monocular slam[C]//2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2016: 4564-4571.

代码:https://github.com/zdzhaoyong/Map2DFusion

PL-SVO(点线 SVO)

论文:Gomez-Ojeda R, Briales J, Gonzalez-Jimenez J. PL-SVO: Semi-direct Monocular Visual Odometry by combining points and line segments[C]//Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ International Conference on. IEEE, 2016: 4211-4216.

代码:https://github.com/rubengooj/pl-svo

STVO-PL(双目点线 VO)

论文:Gomez-Ojeda R, Gonzalez-Jimenez J. Robust stereo visual odometry through a probabilistic combination of points and line segments[C]//2016 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2016: 2521-2526.

代码:https://github.com/rubengooj/stvo-pl

PlaneSLAM

论文:Wietrzykowski J. On the representation of planes for efficient graph-based slam with high-level features[J]. Journal of Automation Mobile Robotics and Intelligent Systems, 2016, 10.

代码:https://github.com/LRMPUT/PlaneSLAM

Pop-up SLAM

论文:Yang S, Song Y, Kaess M, et al. Pop-up slam: Semantic monocular plane slam for low-texture environments[C]//2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2016: 1222-1229.

代码:https://github.com/shichaoy/pop_up_slam

Object SLAM

论文:Mu B, Liu S Y, Paull L, et al. Slam with objects using a nonparametric pose graph[C]//2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2016: 4602-4609.

代码:https://github.com/BeipengMu/objectSLAM

DynamicSemanticMapping(动态语义建图)

论文:Kochanov D, Ošep A, Stückler J, et al. Scene flow propagation for semantic mapping and object discovery in dynamic street scenes[C]//Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ International Conference on. IEEE, 2016: 1785-1792.

代码:https://github.com/ganlumomo/DynamicSemanticMapping

ElasticFusion

论文:Whelan T, Salas-Moreno R F, Glocker B, et al. ElasticFusion: Real-time dense SLAM and light source estimation[J]. The International Journal of Robotics Research, 2016, 35(14): 1697-1716.

代码:https://github.com/mp3guy/ElasticFusion

S-PTAM(双目 PTAM)

论文:Taihú Pire,Thomas Fischer, Gastón Castro, Pablo De Cristóforis, Javier Civera and Julio Jacobo Berlles. S-PTAM: Stereo Parallel Tracking and Mapping. Robotics and Autonomous Systems, 2017.

代码:https://github.com/lrse/sptam

作者其他论文:Castro G, Nitsche M A, Pire T, et al. Efficient on-board Stereo SLAM through constrained-covisibility strategies[J]. Robotics and Autonomous Systems, 2019.

ORB-SLAM2

论文:Mur-Artal R, Tardós J D. Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras[J]. IEEE Transactions on Robotics, 2017, 33(5): 1255-1262.

代码:https://github.com/raulmur/ORB_SLAM2

作者其他论文:

单目半稠密建图:Mur-Artal R, Tardós J D. Probabilistic Semi-Dense Mapping from Highly Accurate Feature-Based Monocular SLAM[C]//Robotics: Science and Systems. 2015, 2015.

VIORB:Mur-Artal R, Tardós J D. Visual-inertial monocular SLAM with map reuse[J]. IEEE Robotics and Automation Letters, 2017, 2(2): 796-803.

多地图:Elvira R, Tardós J D, Montiel J M M. ORBSLAM-Atlas: a robust and accurate multi-map system[J]. arXiv preprint arXiv:1908.11585, 2019.

 DSO

论文:Engel J, Koltun V, Cremers D. Direct sparse odometry[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 40(3): 611-625.

代码:https://github.com/JakobEngel/dso

双目 DSO:Wang R, Schworer M, Cremers D. Stereo DSO: Large-scale direct sparse visual odometry with stereo cameras[C]//Proceedings of the IEEE International Conference on Computer Vision. 2017: 3903-3911.

VI-DSO:Von Stumberg L, Usenko V, Cremers D. Direct sparse visual-inertial odometry using dynamic marginalization[C]//2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2018: 2510-2517.

SemanticFusion

论文:McCormac J, Handa A, Davison A, et al. Semanticfusion: Dense 3d semantic mapping with convolutional neural networks[C]//2017 IEEE International Conference on Robotics and automation (ICRA). IEEE, 2017: 4628-4635.

代码:https://github.com/seaun163/semanticfusion

Semantic_3d_mapping

论文:Yang S, Huang Y, Scherer S. Semantic 3D occupancy mapping through efficient high order CRFs[C]//2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2017: 590-597.

代码:https://github.com/shichaoy/semantic_3d_mapping

PL-SLAM(点线 SLAM)

论文:Gomez-Ojeda R, Zuñiga-Noël D, Moreno F A, et al. PL-SLAM: a Stereo SLAM System through the Combination of Points and Line Segments[J]. arXiv preprint arXiv:1705.09479, 2017.

代码:https://github.com/rubengooj/pl-slam

VIORB

论文:Mur-Artal R, Tardós J D. Visual-inertial monocular SLAM with map reuse[J]. IEEE Robotics and Automation Letters, 2017, 2(2): 796-803.

代码:https://github.com/jingpang/LearnVIORB

 Co-Fusion(实时分割与跟踪多物体)

论文:Rünz M, Agapito L. Co-fusion: Real-time segmentation, tracking and fusion of multiple objects[C]//2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2017: 4471-4478.

代码:https://github.com/martinruenz/co-fusion

InfiniTAM(跨平台 CPU 实时重建)

论文:Prisacariu V A, Kähler O, Golodetz S, et al. Infinitam v3: A framework for large-scale 3d reconstruction with loop closure[J]. arXiv preprint arXiv:1708.00783, 2017.

代码:https://github.com/victorprad/InfiniTAM

BundleFusion

论文:Dai A, Nießner M, Zollhöfer M, et al. Bundlefusion: Real-time globally consistent 3d reconstruction using on-the-fly surface reintegration[J]. ACM Transactions on Graphics (TOG), 2017, 36(4): 76a.

代码:https://github.com/niessner/BundleFusion

VI-MEAN(单目视惯稠密重建)

论文:Yang Z, Gao F, Shen S. Real-time monocular dense mapping on aerial robots using visual-inertial fusion[C]//2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2017: 4552-4559.

代码:https://github.com/dvorak0/VI-MEAN

LDSO(高翔在 DSO 上添加闭环的工作)

论文:Gao X, Wang R, Demmel N, et al. LDSO: Direct sparse odometry with loop closure[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018: 2198-2204.

代码:https://github.com/tum-vision/LDSO

 LCSD_SLAM(松耦合的半直接法单目 SLAM)

论文:Lee S H, Civera J. Loosely-Coupled semi-direct monocular SLAM[J]. IEEE Robotics and Automation Letters, 2018, 4(2): 399-406.

代码:https://github.com/sunghoon031/LCSD_SLAM

 MsakFusion

论文:Runz M, Buffier M, Agapito L. Maskfusion: Real-time recognition, tracking and reconstruction of multiple moving objects[C]//2018 IEEE International Symposium on Mixed and Augmented Reality (ISMAR). IEEE, 2018: 10-20.

代码:https://github.com/martinruenz/maskfusion

PL-VIO

论文:He Y, Zhao J, Guo Y, et al. PL-VIO: Tightly-coupled monocular visual–inertial odometry using point and line features[J]. Sensors, 2018, 18(4): 1159.

代码:https://github.com/HeYijia/PL-VIO

VINS + 线段:https://github.com/Jichao-Peng/VINS-Mono-Optimization

msckf_vio

论文:Sun K, Mohta K, Pfrommer B, et al. Robust stereo visual inertial odometry for fast autonomous flight[J]. IEEE Robotics and Automation Letters, 2018, 3(2): 965-972.

代码:https://github.com/KumarRobotics/msckf_vio

R-VIO

论文:Huai Z, Huang G. Robocentric visual-inertial odometry[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018: 6319-6326.

代码:https://github.com/rpng/R-VIO

VINS-mono

论文:Qin T, Li P, Shen S. Vins-mono: A robust and versatile monocular visual-inertial state estimator[J]. IEEE Transactions on Robotics, 2018, 34(4): 1004-1020.

代码:https://github.com/HKUST-Aerial-Robotics/VINS-Mono

双目版 VINS-Fusion:https://github.com/HKUST-Aerial-Robotics/VINS-Fusion

移动段 VINS-mobile:https://github.com/HKUST-Aerial-Robotics/VINS-Mobile

CPI(视惯融合的封闭式预积分)

论文:Eckenhoff K, Geneva P, Huang G. Closed-form preintegration methods for graph-based visual–inertial navigation[J]. The International Journal of Robotics Research, 2018.

代码:https://github.com/rpng/cpi

Limo(激光单目视觉里程计)

论文:Graeter J, Wilczynski A, Lauer M. Limo: Lidar-monocular visual odometry[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018: 7872-7879.

代码:https://github.com/johannes-graeter/limo

maplab(视惯建图框架,多会话建图,地图合并,视觉惯性批处理优化和闭环)

论文:Schneider T, Dymczyk M, Fehr M, et al. maplab: An open framework for research in visual-inertial mapping and localization[J]. IEEE Robotics and Automation Letters, 2018, 3(3): 1418-1425.

代码:https://github.com/ethz-asl/maplab

DS-SLAM(动态语义 SLAM)

论文:Yu C, Liu Z, Liu X J, et al. DS-SLAM: A semantic visual SLAM towards dynamic environments[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018: 1168-1174.

代码:https://github.com/ivipsourcecode/DS-SLAM

DynSLAM(室外大规模稠密重建)

论文:Bârsan I A, Liu P, Pollefeys M, et al. Robust dense mapping for large-scale dynamic environments[C]//2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2018: 7510-7517.

代码:https://github.com/AndreiBarsan/DynSLAM

FlashFusion

论文:Han L, Fang L. FlashFusion: Real-time Globally Consistent Dense 3D Reconstruction using CPU Computing[C]. RSS, 2018.

代码:https://github.com/lhanaf/FlashFusion

probabilistic_mapping(单目概率稠密重建)

论文:Ling Y, Wang K, Shen S. Probabilistic dense reconstruction from a moving camera[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018: 6364-6371.

代码:https://github.com/ygling2008/probabilistic_mapping

另外一篇稠密重建文章的代码一直没放出来 Github :Ling Y, Shen S. Real‐time dense mapping for online processing and navigation[J]. Journal of Field Robotics, 2019, 36(5): 1004-1036.

SegMap(三维分割建图)

论文:Dubé R, Cramariuc A, Dugas D, et al. SegMap: 3d segment mapping using data-driven descriptors[J]. arXiv preprint arXiv:1804.09557, 2018.

代码:https://github.com/ethz-asl/segmap

 ICE-BA (代码可读性太差了)

论文:Liu H, Chen M, Zhang G, et al. Ice-ba: Incremental, consistent and efficient bundle adjustment for visual-inertial slam[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 1974-1982.

代码:https://github.com/baidu/ICE-BA

DSM

论文:Zubizarreta J, Aguinaga I, Montiel J M M. Direct sparse mapping[J]. arXiv preprint arXiv:1904.06577, 2019.

代码:https://github.com/jzubizarreta/dsm

openvslam

论文:Sumikura S, Shibuya M, Sakurada K. OpenVSLAM: A Versatile Visual SLAM Framework[C]//Proceedings of the 27th ACM International Conference on Multimedia. 2019: 2292-2295.

代码:https://github.com/xdspacelab/openvslam

se2lam(地面车辆位姿估计的视觉里程计)

论文:Zheng F, Liu Y H. Visual-Odometric Localization and Mapping for Ground Vehicles Using SE (2)-XYZ Constraints[C]//2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019: 3556-3562.

代码:https://github.com/izhengfan/se2lam

作者的另外一项工作

论文:Zheng F, Tang H, Liu Y H. Odometry-vision-based ground vehicle motion estimation with se (2)-constrained se (3) poses[J]. IEEE transactions on cybernetics, 2018, 49(7): 2652-2663.

代码:https://github.com/izhengfan/se2clam

GraphSfM(基于图的并行大规模 SFM)

论文:Chen Y, Shen S, Chen Y, et al. Graph-Based Parallel Large Scale Structure from Motion[J]. arXiv preprint arXiv:1912.10659, 2019.

代码:https://github.com/AIBluefisher/GraphSfM

RESLAM(基于边的 SLAM)

论文:Schenk F, Fraundorfer F. RESLAM: A real-time robust edge-based SLAM system[C]//2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019: 154-160.

代码:https://github.com/fabianschenk/RESLAM

 scale_optimization(将单目 DSO 拓展到双目)

论文:Mo J, Sattar J. Extending Monocular Visual Odometry to Stereo Camera System by Scale Optimization[C]. International Conference on Intelligent Robots and Systems (IROS), 2019.

代码:https://github.com/jiawei-mo/scale_optimization

 BAD-SLAM(直接法 RGB-D SLAM)

论文:Schops T, Sattler T, Pollefeys M. BAD SLAM: Bundle Adjusted Direct RGB-D SLAM[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019: 134-144.

代码:https://github.com/ETH3D/badslam

GSLAM(集成 ORB-SLAM2,DSO,SVO 的通用框架)

论文:Zhao Y, Xu S, Bu S, et al. GSLAM: A general SLAM framework and benchmark[C]//Proceedings of the IEEE International Conference on Computer Vision. 2019: 1110-1120.

代码:https://github.com/zdzhaoyong/GSLAM

ARM-VO(运行于 ARM 处理器上的单目 VO)

论文:Nejad Z Z, Ahmadabadian A H. ARM-VO: an efficient monocular visual odometry for ground vehicles on ARM CPUs[J]. Machine Vision and Applications, 2019: 1-10.

代码:https://github.com/zanazakaryaie/ARM-VO

CVO-rgbd(直接法 RGB-D VO)

论文:Ghaffari M, Clark W, Bloch A, et al. Continuous Direct Sparse Visual Odometry from RGB-D Images[J]. arXiv preprint arXiv:1904.02266, 2019.

代码:https://github.com/MaaniGhaffari/cvo-rgbd

CCM-SLAM(多机器人协同单目 SLAM)

论文:Schmuck P, Chli M. CCM‐SLAM: Robust and efficient centralized collaborative monocular simultaneous localization and mapping for robotic teams[J]. Journal of Field Robotics, 2019, 36(4): 763-781.

代码:https://github.com/VIS4ROB-lab/ccm_slam

Kimera(实时度量与语义定位建图开源库)

论文:Rosinol A, Abate M, Chang Y, et al. Kimera: an Open-Source Library for Real-Time Metric-Semantic Localization and Mapping[J]. arXiv preprint arXiv:1910.02490, 2019.

代码:https://github.com/MIT-SPARK/Kimera

NeuroSLAM(脑启发式 SLAM)

论文:Yu F, Shang J, Hu Y, et al. NeuroSLAM: a brain-inspired SLAM system for 3D environments[J]. Biological Cybernetics, 2019: 1-31.

代码:https://github.com/cognav/NeuroSLAM

ORB-SLAM2 + 目标检测/分割的方案语义建图

https://github.com/floatlazer/semantic_slam

https://github.com/qixuxiang/orb-slam2_with_semantic_labelling

https://github.com/Ewenwan/ORB_SLAM2_SSD_Semantic

SIVO(语义辅助特征选择)

论文:Ganti P, Waslander S. Network Uncertainty Informed Semantic Feature Selection for Visual SLAM[C]//2019 16th Conference on Computer and Robot Vision (CRV). IEEE, 2019: 121-128.

代码:https://github.com/navganti/SIVO

FILD(临近图增量式闭环检测)

论文:Shan An, Guangfu Che, Fangru Zhou, Xianglong Liu, Xin Ma, Yu Chen. Fast and Incremental Loop Closure Detection using Proximity Graphs. pp. 378-385, The 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2019)

代码:https://github.com/AnshanTJU/FILD

object-detection-sptam(目标检测与双目 SLAM)

论文:Pire T, Corti J, Grinblat G. Online Object Detection and Localization on Stereo Visual SLAM System[J]. Journal of Intelligent & Robotic Systems, 2019: 1-10.

代码:https://github.com/CIFASIS/object-detection-sptam

Map Slammer(单目深度估计 + SLAM)

论文:Torres-Camara J M, Escalona F, Gomez-Donoso F, et al. Map Slammer: Densifying Scattered KSLAM 3D Maps with Estimated Depth[C]//Iberian Robotics conference. Springer, Cham, 2019: 563-574.

代码:https://github.com/jmtc7/mapSlammer

NOLBO(变分模型的概率 SLAM)

论文:Yu H, Lee B. Not Only Look But Observe: Variational Observation Model of Scene-Level 3D Multi-Object Understanding for Probabilistic SLAM[J]. arXiv preprint arXiv:1907.09760, 2019.

代码:https://github.com/bogus2000/NOLBO

GCNv2_SLAM (基于图卷积神经网络 SLAM)

论文:Tang J, Ericson L, Folkesson J, et al. GCNv2: Efficient correspondence prediction for real-time SLAM[J]. IEEE Robotics and Automation Letters, 2019, 4(4): 3505-3512.

代码:https://github.com/jiexiong2016/GCNv2_SLAM

semantic_suma(激光语义建图)

论文:Chen X, Milioto A, Palazzolo E, et al. SuMa++: Efficient LiDAR-based semantic SLAM[C]//2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2019: 4530-4537.

代码:https://github.com/PRBonn/semantic_suma/

Eigen-Factors(特征因子平面对齐)

论文:Ferrer G. Eigen-Factors: Plane Estimation for Multi-Frame and Time-Continuous Point Cloud Alignment[C]//2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2019: 1278-1284.

代码:https://gitlab.com/gferrer/eigen-factors-iros2019

PlaneLoc

论文:Wietrzykowski J, Skrzypczyński P. PlaneLoc: Probabilistic global localization in 3-D using local planar features[J]. Robotics and Autonomous Systems, 2019, 113: 160-173.

代码:https://github.com/LRMPUT/PlaneLoc

VINS-RGBD

论文:Shan Z, Li R, Schwertfeger S. RGBD-Inertial Trajectory Estimation and Mapping for Ground Robots[J]. Sensors, 2019, 19(10): 2251.

代码:https://github.com/STAR-Center/VINS-RGBD

Open-VINS

论文:Geneva P, Eckenhoff K, Lee W, et al. Openvins: A research platform for visual-inertial estimation[C]//IROS 2019 Workshop on Visual-Inertial Navigation: Challenges and Applications, Macau, China. IROS 2019.

代码:https://github.com/rpng/open_vins

TUM Basalt

论文:Usenko V, Demmel N, Schubert D, et al. Visual-inertial mapping with non-linear factor recovery[J]. IEEE Robotics and Automation Letters, 2019.

代码:https://github.com/VladyslavUsenko/basalt-mirror

LARVIO(多状态约束卡尔曼滤波的单目 VIO,可以在线标定imu)

论文:Qiu X, Zhang H, Fu W, et al. Monocular Visual-Inertial Odometry with an Unbiased Linear System Model and Robust Feature Tracking Front-End[J]. Sensors, 2019, 19(8): 1941.

代码:https://github.com/PetWorm/LARVIO

 vig-init(垂直边缘加速视惯初始化)

论文:Li J, Bao H, Zhang G. Rapid and Robust Monocular Visual-Inertial Initialization with Gravity Estimation via Vertical Edges[C]//2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2019: 6230-6236.

代码:https://github.com/zju3dv/vig-init

PVIO

论文:Robust and Efficient Visual-Inertial Odometry with Multi-plane PriorsJinyu Li, Bangbang Yang, Kai Huang, Guofeng Zhang, and Hujun Bao*PRCV 2019, LNCS 11859, pp. 283–295, 2019.

代码:https://github.com/zju3dv/PVIO

ReFusion(动态场景利用残差三维重建)

论文:Palazzolo E, Behley J, Lottes P, et al. ReFusion: 3D Reconstruction in Dynamic Environments for RGB-D Cameras Exploiting Residuals[J]. arXiv preprint arXiv:1905.02082, 2019.

代码:https://github.com/PRBonn/refusion

RTAB-Map(激光视觉稠密重建)

论文:Labbé M, Michaud F. RTAB‐Map as an open‐source lidar and visual simultaneous localization and mapping library for large‐scale and long‐term online operation[J]. Journal of Field Robotics, 2019, 36(2): 416-446.

代码:https://github.com/introlab/rtabmap 

RobustPCLReconstruction(户外稠密重建)

论文:Lan Z, Yew Z J, Lee G H. Robust Point Cloud Based Reconstruction of Large-Scale Outdoor Scenes[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019: 9690-9698.

代码:https://github.com/ziquan111/RobustPCLReconstruction

 plane-opt-rgbd(室内平面重建)

论文:Wang C, Guo X. Efficient Plane-Based Optimization of Geometry and Texture for Indoor RGB-D Reconstruction[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. 2019: 49-53.

代码:https://github.com/chaowang15/plane-opt-rgbd

DenseSurfelMapping(稠密表面重建)

论文:Wang K, Gao F, Shen S. Real-time scalable dense surfel mapping[C]//2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019: 6919-6925.

代码:https://github.com/HKUST-Aerial-Robotics/DenseSurfelMapping

surfelmeshing(网格重建)

论文:Schöps T, Sattler T, Pollefeys M. Surfelmeshing: Online surfel-based mesh reconstruction[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019.

代码:https://github.com/puzzlepaint/surfelmeshing

相关研究:基于超像素的单目 SLAM:Using Superpixels in Monocular SLAM ICRA 2014

Voxgraph(SDF 体素建图)

论文:Reijgwart V, Millane A, Oleynikova H, et al. Voxgraph: Globally Consistent, Volumetric Mapping Using Signed Distance Function Submaps[J]. IEEE Robotics and Automation Letters, 2019, 5(1): 227-234.

代码:https://github.com/ethz-asl/voxgraph

 ORB-SLAM3

论文:Carlos Campos, Richard Elvira, et al.ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual-Inertial and Multi-Map SLAM[J]. arXiv preprint arXiv:2007.11898, 2020.

代码:https://github.com/UZ-SLAMLab/ORB_SLAM3

 Neural-SLAM(主动神经 SLAM)

论文:Chaplot D S, Gandhi D, Gupta S, et al. Learning to explore using active neural slam[C]. ICLR 2020.

代码:https://github.com/devendrachaplot/Neural-SLAM

TartanVO:一种通用的基于学习的 VO

论文:Wang W, Hu Y, Scherer S. TartanVO: A Generalizable Learning-based VO[J]. arXiv preprint arXiv:2011.00359, 2020.

代码:https://github.com/castacks/tartanvo
数据集:IROS2020 TartanAir: A Dataset to Push the Limits of Visual SLAM

VPS-SLAM(平面语义 SLAM)

论文:Bavle H, De La Puente P, How J, et al. VPS-SLAM: Visual Planar Semantic SLAM for Aerial Robotic Systems[J]. IEEE Access, 2020.

代码:https://bitbucket.org/hridaybavle/semantic_slam/src/master/

Structure-SLAM (低纹理环境下点线 SLAM)

论文:Li Y, Brasch N, Wang Y, et al. Structure-SLAM: Low-Drift Monocular SLAM in Indoor Environments[J]. IEEE Robotics and Automation Letters, 2020, 5(4): 6583-6590.

代码:https://github.com/yanyan-li/Structure-SLAM-PointLine

 PL-VINS

论文:Fu Q, Wang J, Yu H, et al. PL-VINS: Real-Time Monocular Visual-Inertial SLAM with Point and Line[J]. arXiv preprint arXiv:2009.07462, 2020.

代码:https://github.com/cnqiangfu/PL-VINS

versavis(多功能的视惯传感器系统)

论文:Tschopp F, Riner M, Fehr M, et al. VersaVIS—An Open Versatile Multi-Camera Visual-Inertial Sensor Suite[J]. Sensors, 2020, 20(5): 1439.

代码:https://github.com/ethz-asl/versavis

VIlib(VIO 前端库)

论文:Nagy B, Foehn P, Scaramuzza D. Faster than FAST: GPU-Accelerated Frontend for High-Speed VIO[J]. arXiv preprint arXiv:2003.13493, 2020.

代码:https://github.com/uzh-rpg/vilib

Kimera-VIO

论文:A. Rosinol, M. Abate, Y. Chang, L. Carlone, Kimera: an Open-Source Library for Real-Time Metric-Semantic Localization and Mapping. IEEE Intl. Conf. on Robotics and Automation (ICRA), 2020.

代码:https://github.com/MIT-SPARK/Kimera-VIO

CamVox:Lidar辅助视觉 SLAM

论文:ZHU, Yuewen, et al. CamVox: A Low-cost and Accurate Lidar-assisted Visual SLAM System. arXiv preprint arXiv:2011.11357, 2020.

代码:https://github.com/ISEE-Technology/CamVox

VDO-SLAM(动态物体感知的 SLAM)

论文:Zhang J, Henein M, Mahony R, et al. VDO-SLAM: A Visual Dynamic Object-aware SLAM System[J]. arXiv preprint arXiv:2005.11052, 2020.(IJRR Under Review)

相关论文

IROS 2020 Robust Ego and Object 6-DoF Motion Estimation and Tracking

ICRA 2020 Dynamic SLAM: The Need For Speed

代码:https://github.com/halajun/VDO_SLAM

DeepFactors(实时的概率单目稠密 SLAM)

论文:Czarnowski J, Laidlow T, Clark R, et al. DeepFactors: Real-Time Probabilistic Dense Monocular SLAM[J]. arXiv preprint arXiv:2001.05049, 2020.

代码:https://github.com/jczarnowski/DeepFactors (还未放出)

其他论文:Bloesch M, Czarnowski J, Clark R, et al. CodeSLAM—learning a compact, optimisable representation for dense visual SLAM[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 2560-2568.

OpenREALM:无人机实时建图框架

论文:Kern A, Bobbe M, Khedar Y, et al. OpenREALM: Real-time Mapping for Unmanned Aerial Vehicles[J]. arXiv preprint arXiv:2009.10492, 2020.

代码:https://github.com/laxnpander/OpenREALM

你可能感兴趣的:(VIO,计算机视觉,人工智能,slam,深度学习,自动驾驶)