- arm环境下,wpa_supplicant交叉编译+wifi sta连接详解
yuansec
arm开发wpa_supplicantudhcpc
1、前言wpa_supplicant是一个用于WiFi客户端的加密认证工具,支持WEP、WPA、WPA2等多种加密方式。它通常与wpa_cli配合使用,用于管理WiFi连接。本文讲解wpa_supplicant交叉编译全过程以及开发板使用wpa_supplican和udhcpc连接wifi全过程详解。2、前期准备虚拟机:ubuntu18.04源码:libnl-3.11.0.tar.gzopenss
- 机器学习课程的常见章节结构
zhangfeng1133
机器学习分类学习
以下是机器学习课程的常见章节结构,结合了搜索结果中的信息:1.机器学习基础知识机器学习的定义与分类监督学习、无监督学习、半监督学习、强化学习机器学习的产生与发展机器学习的历史与现代应用经验误差与过拟合过拟合与欠拟合的概念及解决方案评估方法与性能度量交叉验证、准确率、召回率、F1分数等偏差与方差偏差-方差权衡及其对模型的影响2.经典机器学习算法2.1线性模型一元线性回归与多元线性回归梯度下降算法(批
- 使用 Pandas 在 Python 中对移动平均线交叉进行回测
云梦量化
pandaspython开发语言均值算法信息可视化策略模式android
使用Pandas在Python中对移动平均线交叉进行回测移动平均线交叉策略移动平均线交叉技术是一种非常著名的简单动量策略。它通常被认为是量化交易的“HelloWorld”示例。此处概述的策略仅适用于多头。创建两个单独的简单移动平均线过滤器,具有特定时间序列的不同回溯期。当较短的回溯移动平均线超过较长的回溯移动平均线时,就会出现购买资产的信号。如果较长的平均值随后超过较短的平均值,则资产将被卖回。当
- 银河麒麟V10系统+飞腾CPU交叉编译Qt5.15
邴洁沫Edna
银河麒麟V10系统+飞腾CPU交叉编译Qt5.15【下载地址】银河麒麟V10系统飞腾CPU交叉编译Qt5.15本资源文件提供了在银河麒麟V10系统上,使用飞腾CPU进行Qt5.15的交叉编译的详细步骤和所需资源。通过本资源,您可以顺利完成Qt5.15的编译工作,为您的开发环境提供强大的支持项目地址:https://gitcode.com/Open-source-documentation-tuto
- 视觉分析之边缘检测算法
Erekys
计算机视觉人工智能音视频
9.1Roberts算子Roberts算子又称为交叉微分算法,是基于交叉差分的梯度算法,通过局部差分计算检测边缘线条。常用来处理具有陡峭的低噪声图像,当图像边缘接近于正45度或负45度时,该算法处理效果更理想。其缺点是对边缘的定位不太准确,提取的边缘线条较粗。importcv2ascvimportnumpyasnpimportmatplotlib.pyplotasplt#读取图像img=cv.im
- ok113i——交叉编译音视频动态库
枪眼
linux音视频t113i嵌入式Linux
提示:buildroot支持ffmpeg和SDL,但博主的ffmpeg是按下面方法编译通过,SDL使用buildroot直接编译也通过;1.下载ffmpeg源码下载链接:https://github.com/FFmpeg/FFmpeg/tags根据版本需要自行下载压缩包,这里下载的是n4.4.5版本;解压:tar-xvfFFmpeg-n4.4.5.tar.gz;解压后得到FFmpeg-n4.4.5
- ok113i平台——多媒体播放器适配
枪眼
linux嵌入式Linux音视频t113i
1.视频播放支持1.1在Linux平台交叉编译ffmpeg动态库,详情查看《ok113i平台——交叉编译音视频动态库》提取如下动态库:libavcodec.so.58.134.100libavdevice.so.58.13.100libavfilter.so.7.110.100libavformat.so.58.76.100libavutil.so.56.70.100libswresample.s
- 主要空间数据挖掘方法
CodeYoung7
总结归纳数据挖掘地理信息
文章出自:http://blog.csdn.net/shaoz/article/details/6847925张新长马林兵等,《地理信息系统数据库》[M],科学出版社,2005年2月第二章第二节空间数据空间数据挖掘是多学科和多种技术交叉综合的新领域,其挖掘方法以人工智能、专家系统、机器学习、数据库和统计等成熟技术为基础。下面介绍近年来出现的主要空间数据挖掘方法。1、空间分析方法利用GIS的各种空间
- cmake 交叉编译
一条晓鱼
linuxubuntuc++
准备工作:交叉编译工具链安装确保交叉编译工具链已经正常安装验证.比如:arm-none-eabi-gcc-varm-none-eabi-gcc-vUsingbuilt-inspecs.COLLECT_GCC=arm-none-eabi-gccCOLLECT_LTO_WRAPPER=/home/jlh/gcc-arm-none-eabi-7-2018-q2-update/bin/../lib/gcc
- 信息管理与信息系统专业总结&不存在计算机专业歧视
WhyteHighmore
感悟与总结
所有边缘交叉学科的人,这篇文章都适用就像我的专业信息管理与信息系统那样!多而不精,而我也同样继承了我专业的特点,但计算机除外。但我很庆幸选报这个专业,也很推荐这个专业。它能让你在高考报考的迷茫期后有更多的选择余地,你可以通过专业了解三大行业,并作出对某一个喜欢行业的努力,不至于学习的不是喜欢的。比如本次vivo组织的篮球赛,上面有说。初次之外我参加过手球赛、羽毛球赛、排球赛。学过网球、游泳、乒乓球
- c++ | 智能指针
常瀚中
c++开发语言后端
文章目录一、前言介绍二、auto_ptr(已废弃)三、unique_ptr右值引用:四、shared_ptr三、unique_ptr(强智能指针)四、智能指针的交叉引用五、weak_ptr(弱智能指针)其他一、前言介绍RAII是一种解决方案,是C++语言的一种管理资源、避免泄漏的惯用法。(对堆上空间进行自动化管理,利用对象自动析构的机制)智能指针的引入:动态内存管理经常会出现俩种问题:一种是忘记释
- QT移植,交叉编译至泰山派RK3566开发板,.pro文件解析
大象荒野
嵌入式QT开发笔记qt开发语言
配置文件丢这里,后面有空整理下。说下大概的注意点,安装路径(qtcreator远程部署的路径)、动态库路径和头文件路径、运行时动态库路径和头文件路径($$pwd在编译后会被换成绝对路径,因此需要指定运行时动态库路径)#指定使用的Qt模块QT+=coreguiwidgets#配置选项CONFIG+=c++11#警告和弃用APIDEFINES+=QT_DEPRECATED_WARNINGS#如果需要禁
- 【人工智能】AI现状分析 || 神经网络的数学基础 || 人工智能交叉领域的发展和技术应用 || 附:小白入门人工智能 学习步骤
追光者♂
Python从入门到人工智能百题千解计划(项目实战案例)人工智能交叉领域神经网络的数学基础AI现状分析
声明:仅学习使用~资料整理分析不易,点个赞吧!目录1.AI现状分析(人工智能基础入门概念)1.1人工智能基础概念1.2人工智能的技术发展路线1.3产业发展的驱动因素1.4人工智能薪资岗位介绍2.神经网络的数学基础2.1神经网络的生物表示2.2神经网络的数学表示2.3神经网络必备的一些数学基础2.3.1Sigmoid函数2.3.2偏置2.4总结3.人工智能交叉领域的发展和技术应用3.1人工智能应用交
- Beyond Scaling Laws: Understanding Transformer Performance with Associative Memory
UnknownBody
LLMDailytransformer深度学习人工智能语言模型
本文是LLM系列文章,针对《BeyondScalingLaws:UnderstandingTransformerPerformancewithAssociativeMemory》的翻译。超越缩放定律:用联想记忆理解Transformer性能摘要1引言2相关工作3模型4新的能量函数5交叉熵损失6实验结果7结论摘要增大Transformer模型的大小并不总是能够提高性能。这种现象不能用经验缩放定律来解
- 【YOLOv11改进- 主干网络】YOLOv11+CSWinTransformer: 交叉窗口注意力Transformer助力YOLOv11有效涨点;
算法conv_er
YOLOv11目标检测改进YOLO目标跟踪人工智能目标检测深度学习transformer计算机视觉
YOLOV11目标检测改进实例与创新改进专栏专栏地址:YOLOv11目标检测改进专栏,包括backbone、neck、loss、分配策略、组合改进、原创改进等本文介绍发paper,毕业皆可使用。本文给大家带来的改进内容是在YOLOv11中更换主干网络为CSWinTransformer,助力YOLOv11有效涨点,通过创新性地开发了十字形窗口自注意力机制。该机制通过将输入特征分割为等宽条纹,在水平与
- 人工智能到底是什么?
yzx991013
开发语言人工智能pythondjango
人工智能(ArtificialIntelligence,简称AI)是一门研究和开发能够模拟、延伸和扩展人类智能的理论、方法、技术及应用系统的学科。以下是关于人工智能的具体介绍:定义-从技术角度:人工智能是让计算机系统具备像人类一样的感知、学习、推理、决策等能力,通过算法和数据使计算机能处理和理解各种复杂信息,如语音识别系统能听懂人类语言并转化为文字。-从学科交叉角度:人工智能融合了计算机科学、控制
- 机器学习和线性回归、softmax回归
小名叫咸菜
人工智能线性回归
监督学习监督学习(supervisedlearning)擅⻓在“给定输⼊特征”的情况下预测标签。每个“特征-标签”对都称为一个样本(example)。我们的目标是生成一个模型,能够将任何输⼊特征映射到标签(即预测)。回归——平方误差损失函数回归(regression)是最简单的监督学习任务之一。分类——交叉熵样本属于“哪一类”的问题称为分类问题回归是训练一个回归函数来输出一个数值;分类是训练一个分
- 第二章:12.3 建立表现基准
望云山190
基准性能水平人工智能机器学习
背景介绍语音识别是一种常见的机器学习应用,用户通过语音输入代替键盘输入,系统需要将语音转换为文本。在这个过程中,算法的性能可以通过训练误差和交叉验证误差来评估。误差定义训练误差(Jtrain):指算法在训练数据集上无法正确转录的音频片段的百分比。在这个例子中,训练误差是10.8%,意味着算法在训练数据上犯了10.8%的错误。交叉验证误差(Jcv):指算法在未见过的数据(交叉验证集)上无法正确转录的
- 第二章:12.4 学习曲线
望云山190
深度学习机器学习人工智能
学习曲线的基本概念学习曲线是展示机器学习模型性能如何随着训练数据量增加而变化的图表。它们可以帮助我们理解模型在不同数据量下的表现,以及模型是否过拟合或欠拟合。二阶模型的学习曲线交叉验证错误(Jcv):这条绿色曲线表示模型在未见过的数据上的表现。它反映了模型的泛化能力,即模型对新数据的预测能力。训练错误(Jtrain):这条红色曲线表示模型在训练数据上的表现。它反映了模型对训练数据的拟合程度。学习曲
- Flex布局
augenstern416
CSScss
Flex布局,即FlexibleBox布局,是一种CSS布局方式,它为盒状模型提供了最大的灵活性。以下是对Flex布局的详细介绍:一、基本概念Flex容器(flexcontainer):采用Flex布局的元素称为Flex容器,简称容器。它的所有子元素自动成为容器成员,称为Flex项目(flexitem),简称项目。主轴(mainaxis)和交叉轴(crossaxis):容器默认存在两根轴,水平的主
- 【Linux】交叉编译
Thenunaoer
Linuxlinux
Linux-交叉编译前言1.aarch64-none-linux-gnu-gcc是什么东西?2.为什么叫交叉编译工具链?2.1为什么叫工具链?2.2为什么叫交叉编译?一、交叉编译wiringOP库的配置过程解释(对照文档的实现过程)1.修改`build.sh`脚本2.修改`Makefile`修改`CC`变量修改`DESTDIR`变量3.修改`wiringPi/Makefile`4.修改`devLi
- nlp技术
tqs_12345
人工智能自然语言处理
自然语言处理(NaturalLanguageProcessing,NLP)技术是一种计算机科学与人工智能的交叉领域,涉及机器对人类语言进行处理和理解的能力。以下是一些常见的NLP技术的示例:1.机器翻译:NLP技术可以帮助机器将一种语言翻译成另一种语言。例如,谷歌翻译使用NLP技术实现自动翻译,用户可以输入一段文本,然后谷歌翻译会自动将其翻译成其他语言。2.文本分类:NLP技术可以将文本分类到不同
- 给我通俗易懂地讲一下损失函数与正则化
利万国潮科技 A9.36(asi智神版)
经验分享
我用最生活化的比喻来解释这两个关键概念---###**1.损失函数:考试得分计算器****场景**:你是个教练,训练学生投篮-**核心作用**:每次投篮训练后,自动算出学生的「犯错分数」-**举个栗子**:-**均方误差(MSE)**:记录每次投篮偏离篮筐的距离(比如差30cm记0.3分,差50cm记0.5分),最后算平均分-**交叉熵损失**:专用于选择题考试(比如识别猫狗图片),答错一题扣2分
- QEMU在嵌入式逆向分析中的应用
饮长安千年月
物联网安全elasticsearch大数据搜索引擎
本文详细汇总介绍了应用QEMU模拟器进行嵌入式环境构建及应用级、内核级逆向调试的技术方法,进行了详尽的实例讲解。一、用QEMU模拟嵌入式调试环境1.安装arm的交叉编译工具链如果订制一个交叉编译工具链,可使用crosstool-ng开源软件来构建。但在这里建议直接安装arm的交叉编译工具链:sudoapt-getinstallgcc-arm-linux-gnueabi或针对特定版本安装:sudoa
- 单级反渗透设备VS双级反渗透设备清洗
莱特莱德
其他
反渗透设备分为单级反渗透设备与双级反渗透设备,当清洗反渗透设备时要逐级逐段的清洗,这样清洗可以使清洗效果更好。为确保脱盐率,清洗的顺序应为先碱洗后酸洗。在反渗透设备化学清洗时应注意:1、单级反渗透设备的清洗顺序:碱洗二段、碱洗一段、酸洗二段、酸洗一段。碱洗二段后再碱洗一段,防止一段清洗下来的污染物对二段膜产生交叉感染。2、双级反渗透设备的清洗顺序:碱洗一级、酸洗一级、碱洗二级、酸洗二级。一、反渗透
- RISC-V交叉编译环境搭建
Lh Muraob
risc-v编译器dockercentos7
目标在Windows10环境下,使用Docker构建centos7容器,在容器中搭建RISC-V的交叉编译环境。主要内容包括:Centos7容器的制作;在容器中安装交叉编译器;Centos7容器的制作Docker的简单介绍以往我们制作一个虚拟机,往往在VMware或VirtualBox等软件中,使用.iso镜像文件构建具有完整操作系统的虚拟机。这种方式制作的虚拟机在运行时资源占用多、冗余步骤多、启
- 音视频:11.Shell脚本-动手编译FFmpeg
eastRiseWm
音视频
Shell脚本-动手编译FFmpeg1.Cmake交叉编译Android动态库2.配置NDK环境2.1NDK中交叉编译工具的变化2.1.1.交叉编译工具位置的变化:3.手写FFmpeg编译脚本4.编译遇到的问题5.如何适配so框架6.编译参数传递7.运行调试音频解码避坑指南1.Cmake交叉编译Android动态库交叉编译:Linux上编译Android的sondk16的以上版本自带交叉编译工具链
- 机器学习·逻辑回归
AAA顶置摸鱼
python深度学习机器学习逻辑回归人工智能
前言逻辑回归虽然名称中有“回归”,但实际上用于分类问题。基于线性回归的模型,通过使用逻辑函数(如Sigmoid函数)将线性组合的结果映射到0到1之间的概率值,用于表示属于某个类别的可能性。一、逻辑回归vs线性回归特性逻辑回归线性回归任务类型分类(二分类为主)回归(预测连续值)输出范围(0,1)(概率值)(-∞,+∞)核心函数Sigmoid函数线性函数损失函数对数损失函数(交叉熵)均方误差(MSE)
- opencv交叉编译问题汇总
yanzili
opencv人工智能计算机视觉
1编译时zlib.h无法找到解决方法:在opencv最顶层目录中的CMakelists.txt文件中找到:ocv_include_directories(${OPENCV_CONFIG_FILE_INCLUDE_DIR})在该行下面添加:ocv_include_directories(./3rdparty/zlib)
- opencv 交叉编译测试
逆商
OpenCVQT
1.源码test.cpp#include#include#include#include#includeusingnamespacecv;usingnamespacestd;intmain(intargc,char**argv){Matimage,image_gray;image=imread(argv[1],cv::IMREAD_COLOR);if(argc!=2||!image.data){c
- 书其实只有三类
西蜀石兰
类
一个人一辈子其实只读三种书,知识类、技能类、修心类。
知识类的书可以让我们活得更明白。类似十万个为什么这种书籍,我一直不太乐意去读,因为单纯的知识是没法做事的,就像知道地球转速是多少一样(我肯定不知道),这种所谓的知识,除非用到,普通人掌握了完全是一种负担,维基百科能找到的东西,为什么去记忆?
知识类的书,每个方面都涉及些,让自己显得不那么没文化,仅此而已。社会认为的学识渊博,肯定不是站在
- 《TCP/IP 详解,卷1:协议》学习笔记、吐槽及其他
bylijinnan
tcp
《TCP/IP 详解,卷1:协议》是经典,但不适合初学者。它更像是一本字典,适合学过网络的人温习和查阅一些记不清的概念。
这本书,我看的版本是机械工业出版社、范建华等译的。这本书在我看来,翻译得一般,甚至有明显的错误。如果英文熟练,看原版更好:
http://pcvr.nl/tcpip/
下面是我的一些笔记,包括我看书时有疑问的地方,也有对该书的吐槽,有不对的地方请指正:
1.
- Linux—— 静态IP跟动态IP设置
eksliang
linuxIP
一.在终端输入
vi /etc/sysconfig/network-scripts/ifcfg-eth0
静态ip模板如下:
DEVICE="eth0" #网卡名称
BOOTPROTO="static" #静态IP(必须)
HWADDR="00:0C:29:B5:65:CA" #网卡mac地址
IPV6INIT=&q
- Informatica update strategy transformation
18289753290
更新策略组件: 标记你的数据进入target里面做什么操作,一般会和lookup配合使用,有时候用0,1,1代表 forward rejected rows被选中,rejected row是输出在错误文件里,不想看到reject输出,将错误输出到文件,因为有时候数据库原因导致某些column不能update,reject就会output到错误文件里面供查看,在workflow的
- 使用Scrapy时出现虽然队列里有很多Request但是却不下载,造成假死状态
酷的飞上天空
request
现象就是:
程序运行一段时间,可能是几十分钟或者几个小时,然后后台日志里面就不出现下载页面的信息,一直显示上一分钟抓取了0个网页的信息。
刚开始已经猜到是某些下载线程没有正常执行回调方法引起程序一直以为线程还未下载完成,但是水平有限研究源码未果。
经过不停的google终于发现一个有价值的信息,是给twisted提出的一个bugfix
连接地址如下http://twistedmatrix.
- 利用预测分析技术来进行辅助医疗
蓝儿唯美
医疗
2014年,克利夫兰诊所(Cleveland Clinic)想要更有效地控制其手术中心做膝关节置换手术的费用。整个系统每年大约进行2600例此类手术,所以,即使降低很少一部分成本,都可以为诊 所和病人节约大量的资金。为了找到适合的解决方案,供应商将视野投向了预测分析技术和工具,但其分析团队还必须花时间向医生解释基于数据的治疗方案意味着 什么。
克利夫兰诊所负责企业信息管理和分析的医疗
- java 线程(一):基础篇
DavidIsOK
java多线程线程
&nbs
- Tomcat服务器框架之Servlet开发分析
aijuans
servlet
最近使用Tomcat做web服务器,使用Servlet技术做开发时,对Tomcat的框架的简易分析:
疑问: 为什么我们在继承HttpServlet类之后,覆盖doGet(HttpServletRequest req, HttpServetResponse rep)方法后,该方法会自动被Tomcat服务器调用,doGet方法的参数有谁传递过来?怎样传递?
分析之我见: doGet方法的
- 揭秘玖富的粉丝营销之谜 与小米粉丝社区类似
aoyouzi
揭秘玖富的粉丝营销之谜
玖富旗下悟空理财凭借着一个微信公众号上线当天成交量即破百万,第七天成交量单日破了1000万;第23天时,累计成交量超1个亿……至今成立不到10个月,粉丝已经超过500万,月交易额突破10亿,而玖富平台目前的总用户数也已经超过了1800万,位居P2P平台第一位。很多互联网金融创业者慕名前来学习效仿,但是却鲜有成功者,玖富的粉丝营销对外至今仍然是个谜。
近日,一直坚持微信粉丝营销
- Java web的会话跟踪技术
百合不是茶
url会话Cookie会话Seession会话Java Web隐藏域会话
会话跟踪主要是用在用户页面点击不同的页面时,需要用到的技术点
会话:多次请求与响应的过程
1,url地址传递参数,实现页面跟踪技术
格式:传一个参数的
url?名=值
传两个参数的
url?名=值 &名=值
关键代码
- web.xml之Servlet配置
bijian1013
javaweb.xmlServlet配置
定义:
<servlet>
<servlet-name>myservlet</servlet-name>
<servlet-class>com.myapp.controller.MyFirstServlet</servlet-class>
<init-param>
<param-name>
- 利用svnsync实现SVN同步备份
sunjing
SVN同步E000022svnsync镜像
1. 在备份SVN服务器上建立版本库
svnadmin create test
2. 创建pre-revprop-change文件
cd test/hooks/
cp pre-revprop-change.tmpl pre-revprop-change
3. 修改pre-revprop-
- 【分布式数据一致性三】MongoDB读写一致性
bit1129
mongodb
本系列文章结合MongoDB,探讨分布式数据库的数据一致性,这个系列文章包括:
数据一致性概述与CAP
最终一致性(Eventually Consistency)
网络分裂(Network Partition)问题
多数据中心(Multi Data Center)
多个写者(Multi Writer)最终一致性
一致性图表(Consistency Chart)
数据
- Anychart图表组件-Flash图转IMG普通图的方法
白糖_
Flash
问题背景:项目使用的是Anychart图表组件,渲染出来的图是Flash的,往往一个页面有时候会有多个flash图,而需求是让我们做一个打印预览和打印功能,让多个Flash图在一个页面上打印出来。
那么我们打印预览的思路是获取页面的body元素,然后在打印预览界面通过$("body").append(html)的形式显示预览效果,结果让人大跌眼镜:Flash是
- Window 80端口被占用 WHY?
bozch
端口占用window
平时在启动一些可能使用80端口软件的时候,会提示80端口已经被其他软件占用,那一般又会有那些软件占用这些端口呢?
下面坐下总结:
1、web服务器是最经常见的占用80端口的,例如:tomcat , apache , IIS , Php等等;
2
- 编程之美-数组的最大值和最小值-分治法(两种形式)
bylijinnan
编程之美
import java.util.Arrays;
public class MinMaxInArray {
/**
* 编程之美 数组的最大值和最小值 分治法
* 两种形式
*/
public static void main(String[] args) {
int[] t={11,23,34,4,6,7,8,1,2,23};
int[]
- Perl正则表达式
chenbowen00
正则表达式perl
首先我们应该知道 Perl 程序中,正则表达式有三种存在形式,他们分别是:
匹配:m/<regexp>;/ (还可以简写为 /<regexp>;/ ,略去 m)
替换:s/<pattern>;/<replacement>;/
转化:tr/<pattern>;/<replacemnt>;
- [宇宙与天文]行星议会是否具有本行星大气层以外的权力呢?
comsci
举个例子: 地球,地球上由200多个国家选举出一个代表地球联合体的议会,那么现在地球联合体遇到一个问题,地球这颗星球上面的矿产资源快要采掘完了....那么地球议会全体投票,一致通过一项带有法律性质的议案,既批准地球上的国家用各种技术手段在地球以外开采矿产资源和其它资源........
&
- Oracle Profile 使用详解
daizj
oracleprofile资源限制
Oracle Profile 使用详解 转
一、目的:
Oracle系统中的profile可以用来对用户所能使用的数据库资源进行限制,使用Create Profile命令创建一个Profile,用它来实现对数据库资源的限制使用,如果把该profile分配给用户,则该用户所能使用的数据库资源都在该profile的限制之内。
二、条件:
创建profile必须要有CREATE PROFIL
- How HipChat Stores And Indexes Billions Of Messages Using ElasticSearch & Redis
dengkane
elasticsearchLucene
This article is from an interview with Zuhaib Siddique, a production engineer at HipChat, makers of group chat and IM for teams.
HipChat started in an unusual space, one you might not
- 循环小示例,菲波拉契序列,循环解一元二次方程以及switch示例程序
dcj3sjt126com
c算法
# include <stdio.h>
int main(void)
{
int n;
int i;
int f1, f2, f3;
f1 = 1;
f2 = 1;
printf("请输入您需要求的想的序列:");
scanf("%d", &n);
for (i=3; i<n; i
- macbook的lamp环境
dcj3sjt126com
lamp
sudo vim /etc/apache2/httpd.conf
/Library/WebServer/Documents
是默认的网站根目录
重启Mac上的Apache服务
这个命令很早以前就查过了,但是每次使用的时候还是要在网上查:
停止服务:sudo /usr/sbin/apachectl stop
开启服务:s
- java ArrayList源码 下
shuizhaosi888
ArrayList源码
版本 jdk-7u71-windows-x64
JavaSE7 ArrayList源码上:http://flyouwith.iteye.com/blog/2166890
/**
* 从这个列表中移除所有c中包含元素
*/
public boolean removeAll(Collection<?> c) {
- Spring Security(08)——intercept-url配置
234390216
Spring Securityintercept-url访问权限访问协议请求方法
intercept-url配置
目录
1.1 指定拦截的url
1.2 指定访问权限
1.3 指定访问协议
1.4 指定请求方法
1.1 &n
- Linux环境下的oracle安装
jayung
oracle
linux系统下的oracle安装
本文档是Linux(redhat6.x、centos6.x、redhat7.x) 64位操作系统安装Oracle 11g(Oracle Database 11g Enterprise Edition Release 11.2.0.4.0 - 64bit Production),本文基于各种网络资料精心整理而成,共享给有需要的朋友。如有问题可联系:QQ:52-7
- hotspot虚拟机
leichenlei
javaHotSpotjvm虚拟机文档
JVM参数
http://docs.oracle.com/javase/6/docs/technotes/guides/vm/index.html
JVM工具
http://docs.oracle.com/javase/6/docs/technotes/tools/index.html
JVM垃圾回收
http://www.oracle.com
- 读《Node.js项目实践:构建可扩展的Web应用》 ——引编程慢慢变成系统化的“砌砖活”
noaighost
Webnode.js
读《Node.js项目实践:构建可扩展的Web应用》
——引编程慢慢变成系统化的“砌砖活”
眼里的Node.JS
初初接触node是一年前的事,那时候年少不更事。还在纠结什么语言可以编写出牛逼的程序,想必每个码农都会经历这个月经性的问题:微信用什么语言写的?facebook为什么推荐系统这么智能,用什么语言写的?dota2的外挂这么牛逼,用什么语言写的?……用什么语言写这句话,困扰人也是阻碍
- 快速开发Android应用
rensanning
android
Android应用开发过程中,经常会遇到很多常见的类似问题,解决这些问题需要花时间,其实很多问题已经有了成熟的解决方案,比如很多第三方的开源lib,参考
Android Libraries 和
Android UI/UX Libraries。
编码越少,Bug越少,效率自然会高。
但可能由于 根本没听说过、听说过但没用过、特殊原因不能用、自己已经有了解决方案等等原因,这些成熟的解决
- 理解Java中的弱引用
tomcat_oracle
java工作面试
不久之前,我
面试了一些求职Java高级开发工程师的应聘者。我常常会面试他们说,“你能给我介绍一些Java中得弱引用吗?”,如果面试者这样说,“嗯,是不是垃圾回收有关的?”,我就会基本满意了,我并不期待回答是一篇诘究本末的论文描述。 然而事与愿违,我很吃惊的发现,在将近20多个有着平均5年开发经验和高学历背景的应聘者中,居然只有两个人知道弱引用的存在,但是在这两个人之中只有一个人真正了
- 标签输出html标签" target="_blank">关于标签输出html标签
xshdch
jsp
http://back-888888.iteye.com/blog/1181202
关于<c:out value=""/>标签的使用,其中有一个属性是escapeXml默认是true(将html标签当做转移字符,直接显示不在浏览器上面进行解析),当设置escapeXml属性值为false的时候就是不过滤xml,这样就能在浏览器上解析html标签,
&nb