大意:求一个无向图的割边,其中可能有重边。
思路:Tarjan求保存割边,排序输出。
不知咋的,数组开到题目给定的100010会报错,改成200020就行了,KD啊。
CODE:
#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <algorithm>
using
namespace std;
#define MAXN 10010
#define MAXM 100010
struct Edge
{
int v, next;
int id;
}edge[MAXM*2];
int first[MAXN], low[MAXN], dfn[MAXN];
int bridge[MAXM*2];
int n, m;
int cnt;
int tot, nbridge;
void init()
{
cnt =
0;
tot = nbridge =
0;
memset(first, -
1,
sizeof(first));
memset(dfn,
0,
sizeof(dfn));
}
void read_graph(
int u,
int v,
int id)
{
edge[cnt].v = v, edge[cnt].id = id;
edge[cnt].next = first[u], first[u] = cnt++;
}
int check(
int u,
int fa)
{
int count =
0;
for(
int e = first[u]; e != -
1; e = edge[e].next)
{
int v = edge[e].v;
if(v == fa) count++;
}
if(count >=
2)
return
1;
return
0;
}
void read_graph2()
{
scanf(
"
%d%d
", &n, &m);
for(
int i =
1; i <= m; i++)
{
int u, v;
scanf(
"
%d%d
", &u, &v);
read_graph(u, v, i);
read_graph(v, u, i);
}
}
void Tarjan(
int u,
int fa)
{
dfn[u] = low[u] = ++tot;
bool repeat =
0;
for(
int e = first[u]; e !=-
1; e = edge[e].next)
{
int v = edge[e].v;
if(v == fa && !repeat)
//
去掉一条反向边,其余的可能是重边。
{
repeat =
1;
continue;
}
if(!dfn[v])
{
Tarjan(v, u);
low[u] = min(low[u], low[v]);
if(dfn[u] < low[v]) bridge[nbridge++] = edge[e].id;
}
//if(dfn[u] <= low[v]) 求割顶
low[u] = min(low[u], dfn[v]);
}
}
void solve()
{
Tarjan(
1, -
1);
sort(bridge, bridge+nbridge);
printf(
"
%d\n
", nbridge);
for(
int i =
0; i < nbridge; i++) printf(i != nbridge-
1?
"
%d
":
"
%d\n
", bridge[i]);
}
int main()
{
int T;
scanf(
"
%d
", &T);
while(T--)
{
init();
read_graph2();
solve();
if(T) printf(
"
\n
");
}
return
0;
}
判重方法2:
#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <algorithm>
using
namespace std;
#define MAXN 10010
#define MAXM 100010
struct Edge
{
int v, next;
int id;
}edge[MAXM*2];
int first[MAXN], low[MAXN], dfn[MAXN];
int bridge[MAXM*2];
int n, m;
int cnt;
int tot, nbridge;
void init()
{
cnt =
0;
tot = nbridge =
0;
memset(first, -
1,
sizeof(first));
memset(dfn,
0,
sizeof(dfn));
}
void read_graph(
int u,
int v,
int id)
{
edge[cnt].v = v, edge[cnt].id = id;
edge[cnt].next = first[u], first[u] = cnt++;
}
int check(
int u,
int fa)
{
int count =
0;
for(
int e = first[u]; e != -
1; e = edge[e].next)
{
int v = edge[e].v;
if(v == fa) count++;
}
if(count >=
2)
return
1;
return
0;
}
void read_graph2()
{
scanf(
"
%d%d
", &n, &m);
for(
int i =
1; i <= m; i++)
{
int u, v;
scanf(
"
%d%d
", &u, &v);
read_graph(u, v, i);
read_graph(v, u, i);
}
}
void Tarjan(
int u,
int fa)
{
dfn[u] = low[u] = ++tot;
bool repeat =
0;
for(
int e = first[u]; e !=-
1; e = edge[e].next)
{
int v = edge[e].v;
if(v == fa && !repeat)
//
去掉一条反向边,其余的可能是重边。
{
repeat =
1;
continue;
}
if(!dfn[v])
{
Tarjan(v, u);
low[u] = min(low[u], low[v]);
if(low[v] > dfn[u]) bridge[nbridge++] = edge[e].id;
}
low[u] = min(low[u], dfn[v]);
}
}
void solve()
{
Tarjan(
1, -
1);
sort(bridge, bridge+nbridge);
printf(
"
%d\n
", nbridge);
for(
int i =
0; i < nbridge; i++) printf(i != nbridge-
1?
"
%d
":
"
%d\n
", bridge[i]);
}
int main()
{
int T;
scanf(
"
%d
", &T);
while(T--)
{
init();
read_graph2();
solve();
if(T) printf(
"
\n
");
}
return
0;
}