李宏毅机器学习-HomeWork_01

Homework_01 主要涉及的用Deep Neural Networks(DNN)处理线性回归问题,更新参数的方法是梯度下降法。

是对COVID-19的结果预测,以下附上GoogleColab代码链接。https://colab.research.google.com/drive/1FzqsOU6NIydOz09FMshp9dDJ14gFJTtC#scrollTo=GrEbUxazQAAZicon-default.png?t=L9C2https://colab.research.google.com/drive/1FzqsOU6NIydOz09FMshp9dDJ14gFJTtC#scrollTo=GrEbUxazQAAZ

Download Data

tr_path = 'covid.train.csv'  # path to training data
tt_path = 'covid.test.csv'   # path to testing data

!gdown --id '19CCyCgJrUxtvgZF53vnctJiOJ23T5mqF' --output covid.train.csv
!gdown --id '1CE240jLm2npU-tdz81-oVKEF3T2yfT1O' --output covid.test.csv

Import Some Package 

# PyTorch
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader

# For data preprocess
import numpy as np
import csv
import os

# For plotting
import matplotlib.pyplot as plt
from matplotlib.pyplot import figure

myseed = 42069  # set a random seed for reproducibility
torch.backends.cudnn.deterministic = True  # 每次返回的卷积算法将会是固定的
torch.backends.cudnn.benchmark = False  # 若为True,会让每个卷积层搜索最适合的卷积算法,因而一开始比较费时间,会设置为False
np.random.seed(myseed)
torch.manual_seed(myseed) # 为CPU中设置种子,生成随机数
if torch.cuda.is_available():
    torch.cuda.manual_seed_all(myseed) # 为GPU设置种子,生成随机数

 Some Utilities

def get_device():
    ''' Get device (if GPU is available, use GPU) '''
    return 'cuda' if torch.cuda.is_available() else 'cpu'

def plot_learning_curve(loss_record, title=''):
    ''' Plot learning curve of your DNN (train & dev loss) '''
    total_steps = len(loss_record['train'])
    x_1 = range(total_steps)
    x_2 = x_1[::len(loss_record['train']) // len(loss_record['dev'])]  # //表示 向下取整 并作为步长
    figure(figsize=(6, 4))
    plt.plot(x_1, loss_record['train'], c='tab:red', label='train')
    plt.plot(x_2, loss_record['dev'], c='tab:cyan', label='dev')
    plt.ylim(0.0, 5.) # 设置y轴数值范围
    plt.xlabel('Training steps')
    plt.ylabel('MSE loss')
    plt.title('Learning curve of {}'.format(title))
    plt.legend() # 为图中曲线设置解释性图标
    plt.show()


def plot_pred(dv_set, model, device, lim=35., preds=None, targets=None):
    ''' Plot prediction of your DNN '''
    if preds is None or targets is None:
        model.eval()
        preds, targets = [], []
        for x, y in dv_set:
            x, y = x.to(device), y.to(device)
            with torch.no_grad():
                pred = model(x)
                preds.append(pred.detach().cpu()) # pred为一个tensor,pred.detach()将Tensor分离,,并将x的require_grad改为False,最终将tensor添加至cpu
                targets.append(y.detach().cpu())
        preds = torch.cat(preds, dim=0).numpy() # 拼接函数,增加了行,
        targets = torch.cat(targets, dim=0).numpy() # 将tensor转换为numpy中的数组

    figure(figsize=(5, 5))
    plt.scatter(targets, preds, c='r', alpha=0.5) # 绘制散点图,alpha表示透明度
    plt.plot([-0.2, lim], [-0.2, lim], c='b')
    plt.xlim(-0.2, lim)
    plt.ylim(-0.2, lim)
    plt.xlabel('ground truth value')
    plt.ylabel('predicted value')
    plt.title('Ground Truth v.s. Prediction')
    plt.show()

 # **Preprocess**

We have three kinds of datasets:
* `train`: for training
* `dev`: for validation
* `test`: for testing (w/o target value)

## **Dataset**

The `COVID19Dataset` below does:
* read `.csv` files
* extract features
* split `covid.train.csv` into train/dev sets
* normalize features

Finishing `TODO` below might make you pass medium baseline.

class COVID19Dataset(Dataset):
    ''' Dataset for loading and preprocessing the COVID19 dataset '''
    def __init__(self,
                 path,
                 mode='train',
                 target_only=False):
        self.mode = mode

        # Read data into numpy arrays
        with open(path, 'r') as fp:
            data = list(csv.reader(fp)) # 
            data = np.array(data[1:])[:, 1:].astype(float)
        
        if not target_only:
            feats = list(range(93)) # 
        else:
            # TODO: Using 40 states & 2 tested_positive features (indices = 57 & 75)
            pass

        if mode == 'test':
            # Testing data
            # data: 893 x 93 (40 states + day 1 (18) + day 2 (18) + day 3 (17))
            data = data[:, feats] # 前93列数据
            self.data = torch.FloatTensor(data) # 类型转换,将list,numpy转换为浮点类型的tensor                
        else:
            # Training data (train/dev sets)
            # data: 2700 x 94 (40 states + day 1 (18) + day 2 (18) + day 3 (18))
            target = data[:, -1] # 最后一列
            data = data[:, feats] # 前93列
            
            # Splitting training data into train & dev sets 占比9:1
            if mode == 'train':
                indices = [i for i in range(len(data)) if i % 10 != 0]
            elif mode == 'dev':
                indices = [i for i in range(len(data)) if i % 10 == 0]
            
            # Convert data into PyTorch tensors
            self.data = torch.FloatTensor(data[indices])
            self.target = torch.FloatTensor(target[indices])

        # Normalize features (you may remove this part to see what will happen) 正则化数据至0-1
        self.data[:, 40:] = \
            (self.data[:, 40:] - self.data[:, 40:].mean(dim=0, keepdim=True)) \
            / self.data[:, 40:].std(dim=0, keepdim=True)

        self.dim = self.data.shape[1]

        print('Finished reading the {} set of COVID19 Dataset ({} samples found, each dim = {})'
              .format(mode, len(self.data), self.dim))

    def __getitem__(self, index):
        # Returns one sample at a time
        if self.mode in ['train', 'dev']:
            # For training
            return self.data[index], self.target[index]
        else:
            # For testing (no target)
            return self.data[index]

    def __len__(self):
        # Returns the size of the dataset
        return len(self.data)

## **DataLoader**

A `DataLoader` loads data from a given `Dataset` into batches.
 

def prep_dataloader(path, mode, batch_size, n_jobs=0, target_only=False):
    ''' Generates a dataset, then is put into a dataloader. '''
    dataset = COVID19Dataset(path, mode=mode, target_only=target_only)  # Construct dataset
    dataloader = DataLoader(
        dataset, batch_size,
        shuffle=(mode == 'train'), drop_last=False,   # 如果 mode == 'train' ,则 shuffle=True ,数据集则会打乱顺序
        num_workers=n_jobs, pin_memory=True)                            # Construct dataloader
    return dataloader

 # **Deep Neural Network**

`NeuralNet` is an `nn.Module` designed for regression.
The DNN consists of 2 fully-connected layers with ReLU activation.
This module also included a function `cal_loss` for calculating loss.

class NeuralNet(nn.Module):
    ''' A simple fully-connected deep neural network '''
    def __init__(self, input_dim):
        super(NeuralNet, self).__init__()

        # Define your neural network here
        # TODO: How to modify this model to achieve better performance?
        self.net = nn.Sequential(
            nn.Linear(input_dim, 64),
            nn.ReLU(),
            nn.Linear(64, 1)
        )

        # Mean squared error loss, criterion 标准、尺度
        self.criterion = nn.MSELoss(reduction='mean') # mean 是指返回差值的绝对值

    def forward(self, x):
        ''' Given input of size (batch_size x input_dim), compute output of the network '''
        return self.net(x).squeeze(1) # 指定删除的维度,但是这个维度必须为1,否则会报错

    def cal_loss(self, pred, target):
        ''' Calculate loss '''
        # TODO: you may implement L2 regularization here
        return self.criterion(pred, target) # 计算 pred与target之间的MSELoss,并且返回绝对值

# **Train/Dev/Test** 

 

def train(tr_set, dv_set, model, config, device):
    ''' DNN training '''

    n_epochs = config['n_epochs']  # Maximum number of epochs

    # Setup optimizer
    optimizer = getattr(torch.optim, config['optimizer'])(  
        model.parameters(), **config['optim_hparas']) #用于查找实例化对象torch.optim 中是否有属性 config['optimizer'] ,若没有,返回后面括号中内容

    min_mse = 1000.
    loss_record = {'train': [], 'dev': []}      # for recording training loss
    early_stop_cnt = 0
    epoch = 0
    while epoch < n_epochs:
        model.train()                           # set model to training mode
        for x, y in tr_set:                     # iterate through the dataloader
            optimizer.zero_grad()               # set gradient to zero
            x, y = x.to(device), y.to(device)   # move data to device (cpu/cuda)
            pred = model(x)                     # forward pass (compute output)
            mse_loss = model.cal_loss(pred, y)  # compute loss
            mse_loss.backward()                 # compute gradient (backpropagation)
            optimizer.step()                    # update model with optimizer, step()函数用于更新参数
            loss_record['train'].append(mse_loss.detach().cpu().item()) # mse_loss为一个tensor,mse_loss.detach()将Tensor分离,,并将x的require_grad改为False,最终将tensor添加至cpu

        # After each epoch, test your model on the validation (development) set.
        dev_mse = dev(dv_set, model, device)
        if dev_mse < min_mse:
            # Save model if your model improved
            min_mse = dev_mse
            print('Saving model (epoch = {:4d}, loss = {:.4f})'
                .format(epoch + 1, min_mse))
            torch.save(model.state_dict(), config['save_path'])  # Save model to specified path , state_dict变量存放训练过程中需要学习的权重和偏执系数
            early_stop_cnt = 0
        else:
            early_stop_cnt += 1

        epoch += 1
        loss_record['dev'].append(dev_mse)
        if early_stop_cnt > config['early_stop']:
            # Stop training if your model stops improving for "config['early_stop']" epochs.
            break

    print('Finished training after {} epochs'.format(epoch))
    return min_mse, loss_record
def dev(dv_set, model, device):
    model.eval()                                # set model to evalutation mode
    total_loss = 0
    for x, y in dv_set:                         # iterate through the dataloader
        x, y = x.to(device), y.to(device)       # move data to device (cpu/cuda)
        with torch.no_grad():                   # disable gradient calculation
            pred = model(x)                     # forward pass (compute output)
            mse_loss = model.cal_loss(pred, y)  # compute loss
        total_loss += mse_loss.detach().cpu().item() * len(x)  # accumulate loss
    total_loss = total_loss / len(dv_set.dataset)              # compute averaged loss

    return total_loss
def test(tt_set, model, device):
    model.eval()                                # set model to evalutation mode
    preds = []
    for x in tt_set:                            # iterate through the dataloader
        x = x.to(device)                        # move data to device (cpu/cuda)
        with torch.no_grad():                   # disable gradient calculation
            pred = model(x)                     # forward pass (compute output)
            preds.append(pred.detach().cpu())   # collect prediction
    preds = torch.cat(preds, dim=0).numpy()     # concatenate all predictions and convert to a numpy array 数据拼接,增加行
    return preds

# **Setup Hyper-parameters**

`config` contains hyper-parameters for training and the path to save your model.

device = get_device()                 # get the current available device ('cpu' or 'cuda')
os.makedirs('models', exist_ok=True)  # The trained model will be saved to ./models/
target_only = False                   # TODO: Using 40 states & 2 tested_positive features

# TODO: How to tune these hyper-parameters to improve your model's performance?
config = {
    'n_epochs': 3000,                # maximum number of epochs
    'batch_size': 270,               # mini-batch size for dataloader
    'optimizer': 'SGD',              # optimization algorithm (optimizer in torch.optim)
    'optim_hparas': {                # hyper-parameters for the optimizer (depends on which optimizer you are using)
        'lr': 0.001,                 # learning rate of SGD
        'momentum': 0.9              # momentum for SGD
    },
    'early_stop': 200,               # early stopping epochs (the number epochs since your model's last improvement)
    'save_path': 'models/model.pth'  # your model will be saved here
}

 # **Load data and model**

tr_set = prep_dataloader(tr_path, 'train', config['batch_size'], target_only=target_only)
dv_set = prep_dataloader(tr_path, 'dev', config['batch_size'], target_only=target_only)
tt_set = prep_dataloader(tt_path, 'test', config['batch_size'], target_only=target_only)

model = NeuralNet(tr_set.dataset.dim).to(device)  # Construct model and move to device

 Start training!!!

model_loss, model_loss_record = train(tr_set, dv_set, model, config, device)

plot_learning_curve(model_loss_record, title='deep model')

李宏毅机器学习-HomeWork_01_第1张图片

del model
model = NeuralNet(tr_set.dataset.dim).to(device)
ckpt = torch.load(config['save_path'], map_location='cpu')  # Load your best model
model.load_state_dict(ckpt)
plot_pred(dv_set, model, device)  # Show prediction on the validation set

李宏毅机器学习-HomeWork_01_第2张图片

 Testing !!!

def save_pred(preds, file):
    ''' Save predictions to specified file '''
    print('Saving results to {}'.format(file))
    with open(file, 'w') as fp:
        writer = csv.writer(fp)
        writer.writerow(['id', 'tested_positive'])
        for i, p in enumerate(preds):
            writer.writerow([i, p])

preds = test(tt_set, model, device)  # predict COVID-19 cases with your model
save_pred(preds, 'pred.csv')         # save prediction file to pred.csv

 

你可能感兴趣的:(机器学习)