AI识别教程 yolov5 (穿越火线,csgo等FPS游戏识别)

目录

一、前言

二、视频识别

三、版本和配置环境

四、准备工作

1.yolov5 模板下载

2.安装所需库

 (1)安装pytorch(建议安装gpu版本cpu版本太慢)

3.运行检测

五、数据集

1.制作标签

2.转格式(json转txt)

六、配置文件

1.mydata.yaml

2.mydata_1.yaml

七、训练模型

八、测试视频

九、总结


一、前言

1.代码在我的资源里下载。

2.本文不会讲解关于yolov5的理论问题,只是教大家实操,这篇文章可以帮助大家学会yolov5的训练与识别,本文使用穿越火线(cf)为例。

二、视频识别

我们先看视频效果。

yolov5 穿越火线角色识别

三、版本和配置环境

# pip install -r requirements.txt

# Base ----------------------------------------
matplotlib>=3.2.2
numpy>=1.18.5
opencv-python>=4.1.2
Pillow>=7.1.2
PyYAML>=5.3.1
requests>=2.23.0
scipy>=1.4.1
torch>=1.7.0
torchvision>=0.8.1
tqdm>=4.41.0

# Logging -------------------------------------
tensorboard>=2.4.1
# wandb

# Plotting ------------------------------------
pandas>=1.1.4
seaborn>=0.11.0

# Export --------------------------------------
# coremltools>=4.1  # CoreML export
# onnx>=1.9.0  # ONNX export
# onnx-simplifier>=0.3.6  # ONNX simplifier
# scikit-learn==0.19.2  # CoreML quantization
# tensorflow>=2.4.1  # TFLite export
# tensorflowjs>=3.9.0  # TF.js export
# openvino-dev  # OpenVINO export

# Extras --------------------------------------
# albumentations>=1.0.3
# Cython  # for pycocotools https://github.com/cocodataset/cocoapi/issues/172
# pycocotools>=2.0  # COCO mAP
# roboflow
thop  # FLOPs computation
 

四、准备工作

1.yolov5 模板下载

第一步:将整个代码从github上下载下来,

 网址:GitHub - ultralytics/yolov5: YOLOv5 in PyTorch > ONNX > CoreML > TFLite

也可以直接到GitHub上搜yolov5

AI识别教程 yolov5 (穿越火线,csgo等FPS游戏识别)_第1张图片

 然后点code(绿色) 最后点下面的Download ZIP (最好不要下到C盘,如果C盘够用也没关系)

2.安装所需库

主要是安装版本与配置声明中所需在库。
matplotlib>=3.2.2
numpy>=1.18.5
opencv-python>=4.1.2
Pillow
PyYAML>=5.3.1
scipy>=1.4.1
torch>=1.7.0
torchvision>=0.8.1
tqdm>=4.41.0
tensorboard>=2.4.1
seaborn>=0.11.0
pandas
pycocotools>=2.0  # COCO mAP
albumentations>=1.0.2


 (1)安装pytorch(建议安装gpu版本cpu版本太慢)

这些库中可能就pytorch比较难安装,其他库用pip install 基本能实现。

可直接在Anaconda Prompt里输入:

pip install torch==1.7.0+cu101 torchvision==0.8.1+cu101 torchaudio===0.7.0 -f https://download.pytorch.org/whl/torch_stable.html

很大几率会不成功

如果不成功,可以参考一下下面的网址。安装Pytorch-gpu版本(第一次安装 或 已经安装Pytorch-cpu版本后)_js_dxx的博客-CSDN博客_pytorchgpu版本

3.运行检测

下载完yolov5后,运行detect,可以帮助我们检查上面的环境是不是安装成功。

AI识别教程 yolov5 (穿越火线,csgo等FPS游戏识别)_第2张图片

如果运行不报错,我们会在runs//detect//exp 文件夹下看到两张已经预测出的照片。

AI识别教程 yolov5 (穿越火线,csgo等FPS游戏识别)_第3张图片AI识别教程 yolov5 (穿越火线,csgo等FPS游戏识别)_第4张图片

如果报错,问题也不大,看就是安装的环境版本比较低或者没安装,我们稍微调试一下就OK了。

五、数据集

我们先要创建几个文件夹用来存放数据和模型。

在yolov5-master如下图所示文件夹

 AI识别教程 yolov5 (穿越火线,csgo等FPS游戏识别)_第5张图片

1.制作标签

这里我是以穿越火线为例,提供100个已经标记好的数据(放在文末)。你也可以自己标记,一百张效果不是很好,可以多标记几张。

(1)安装labelme

在Anaconda Prompt里pip install labelme

(2)使用labelme

在Anaconda Prompt里输入labelme,会弹出一个窗口。

AI识别教程 yolov5 (穿越火线,csgo等FPS游戏识别)_第6张图片

然后打开图片所在的文件夹

点击rectangle,标记想要识别的东西。

我们这里用了两个标签(保卫者:'Global Risk'  、潜伏者: 'Black List')

 

 标记完后保存到一个新的文件夹下,保存的文件格式是.json

2.转格式(json转txt)

要修改代码中标签名称,存放json文件的绝对路径和保存txt文件的绝对路径。

我们将生成的txt放在my_dates//labels//train中

将原来的图片放在my_dates//images//train中

import json
import os
name2id =  {'Global Risk':0,'Black List':1}    #标签名称
def convert(img_size, box):
    dw = 1. / (img_size[0])
    dh = 1. / (img_size[1])
    x = (box[0] + box[2]) / 2.0 - 1
    y = (box[1] + box[3]) / 2.0 - 1
    w = box[2] - box[0]
    h = box[3] - box[1]
    x = x * dw
    w = w * dw
    y = y * dh
    h = h * dh
    return (x, y, w, h)
def decode_json(json_floder_path, json_name):
    txt_name = 'C:\\img \\' + json_name[0:-5] + '.txt'
    #存放txt的绝对路径
    txt_file = open(txt_name, 'w')
    json_path = os.path.join(json_floder_path, json_name)
    data = json.load(open(json_path, 'r', encoding='gb2312',errors='ignore'))
    img_w = data['imageWidth']
    img_h = data['imageHeight']
    for i in data['shapes']:
        label_name = i['label']
        if (i['shape_type'] == 'rectangle'):
            x1 = int(i['points'][0][0])
            y1 = int(i['points'][0][1])
            x2 = int(i['points'][1][0])
            y2 = int(i['points'][1][1])
 
            bb = (x1, y1, x2, y2)
            bbox = convert((img_w, img_h), bb)
            txt_file.write(str(name2id[label_name]) + " " + " ".join([str(a) for a in bbox]) + '\n')

if __name__ == "__main__":
    json_floder_path = 'G:\\img\\'
    #存放json的文件夹的绝对路径
    json_names = os.listdir(json_floder_path)
    for json_name in json_names:
        decode_json(json_floder_path, json_name)

六、配置文件

1.mydata.yaml

copy一下coco128.yaml文件到my_dates下并改名为mydata

AI识别教程 yolov5 (穿越火线,csgo等FPS游戏识别)_第7张图片

AI识别教程 yolov5 (穿越火线,csgo等FPS游戏识别)_第8张图片

 然后修改里面的参数:

(1)先将path注释掉(别忘记注释) ,然后将train和val改为存放训练集图片的位置

train: my_dates/images/train 
val: my_dates/images/train

 (2)然后将nc 改为标签个数(我们这里是2),names里面改为我们的标签名。

AI识别教程 yolov5 (穿越火线,csgo等FPS游戏识别)_第9张图片

别忘了注释path

2.mydata_1.yaml

copy一下yolov5s.yaml文件到my_dates下并改名为mydata_1。(yolov5s效果最差但速度最快我们可以根据自己的情况选择模型)

AI识别教程 yolov5 (穿越火线,csgo等FPS游戏识别)_第10张图片

AI识别教程 yolov5 (穿越火线,csgo等FPS游戏识别)_第11张图片

  然后修改里面的参数:

这里只需要将第四行的nc改为2(标签个数) 。

AI识别教程 yolov5 (穿越火线,csgo等FPS游戏识别)_第12张图片

七、训练模型

我们要对train.py文件进行修改。

1.为了防止编码出错,with open后面要加上encoding='utf-8',要改好几处,可以用ctrl+F查找with open。

AI识别教程 yolov5 (穿越火线,csgo等FPS游戏识别)_第13张图片

 2.我们还要改多处default的值,在代码的480行左右。(改的全是default的值)。

一共要修改六处,最后一处稍微靠下一点。

第四处如果电脑配置好的话可以不用修改。

AI识别教程 yolov5 (穿越火线,csgo等FPS游戏识别)_第14张图片

AI识别教程 yolov5 (穿越火线,csgo等FPS游戏识别)_第15张图片

 最后运行:

AI识别教程 yolov5 (穿越火线,csgo等FPS游戏识别)_第16张图片

时间有点长(一小时左右)!!!!

如果报错根据实际情况修改一下就ok

结果会放在下面路径下

AI识别教程 yolov5 (穿越火线,csgo等FPS游戏识别)_第17张图片

八、测试视频

我们只需修改detect.py文件夹下的权重路径和测试路径。(210行左右)

AI识别教程 yolov5 (穿越火线,csgo等FPS游戏识别)_第18张图片

只需要将需要预测的视频或图片放在下面文件夹下,

AI识别教程 yolov5 (穿越火线,csgo等FPS游戏识别)_第19张图片

然后运行detect.py就ok了!!!!!!

AI识别教程 yolov5 (穿越火线,csgo等FPS游戏识别)_第20张图片

结果放在 (每次运行都会生成一个新的exp,所以我这是exp7)

AI识别教程 yolov5 (穿越火线,csgo等FPS游戏识别)_第21张图片

九、总结

 我们本次只是识别穿越火线中的人物,还没有实现自动瞄准,我只用了一百张图片进行预测,预测效果不是很好,你可以增加些图片进行训练。

后期还会更新!!!!!!!!!!!!!!!!!!!

你可能感兴趣的:(python,人工智能,图像处理)