- 人工智能引领技术革命:ChatGPT与深度学习的突破性进展
撒旦骑路西法,大战吕布
国内外安全资讯人工智能
在全球科技快速发展的今天,人工智能(AI)正以前所未有的速度渗透到各个行业,成为推动社会变革的重要力量。特别是在自然语言处理(NLP)领域,OpenAI的ChatGPT凭借深度学习技术的持续突破,展现了AI在理解、推理、对话生成等方面的惊人进步。本文将深入探讨ChatGPT及深度学习的最新突破,以及它对不同行业的深远影响。1.ChatGPT:AI语言模型的革新者1.1什么是ChatGPT?Chat
- 【论文阅读】LayoutPrompter: Awaken the Design Ability of Large Language Models
进击的乔洋
论文阅读语言模型人工智能
LayoutPrompter:AwakentheDesignAbilityofLargeLanguageModelsabstract条件图形布局生成是一种自动将用户约束映射为高质量布局的技术,目前受到了广泛关注。尽管最近的工作取得了很好的性能,但缺乏通用性和数据效率阻碍了它们的实际应用。本文提出Layout-Prompter,利用大型语言模型(llm)通过上下文学习来解决上述问题。LayoutPr
- 深入探索Deeplearning4j(DL4J):Java深度学习的全面指南
软件职业规划
java深度学习开发语言
一、DL4J框架概述Deeplearning4j(DL4J)是一个开源的深度学习框架,专为Java和Scala设计,运行在Java虚拟机(JVM)上。它由Skymind公司开发并维护,旨在将深度学习技术应用于大规模商业应用。DL4J支持多种深度学习模型,包括卷积神经网络(CNN)、循环神经网络(RNN)、长短期记忆网络(LSTM)等。自2014年首次发布以来,DL4J已经成为Java深度学习领域的
- 电机的声音数据进行AI分析
鹿屿二向箔
人工智能
对电机的声音数据进行分析,尤其是当数据来源于加速度传感器时,涉及到的不仅仅是声音分析,还包含了振动分析。这类问题通常可以归类于机械故障诊断或预测性维护领域。以下是一些适合处理这种类型数据的人工智能模型和方法:1.特征工程+传统机器学习模型在直接应用深度学习之前,通常首先会进行特征提取。对于振动信号(即使通过加速度传感器采集),常用的方法包括计算频域特征(如傅里叶变换后的频谱)、时域特征(如均方根值
- 李沐深度学习预备知识——数据操作
flex_university
李沐课程学习笔记深度学习人工智能
预备知识——数据操作1、数据操作1.1基本操作importtorchx=torch.arange(12)print(x)print(x.shape)print(x.numel())x=x.reshape(3,4)#变形x=x.reshape(2,-1)#-1代表自动计算torch.zeros((2,3,4))#生成全0张量torch.ones((2,3,4))#生成全1张量torch.randn(
- 可解释性机器学习——从金融科技视角(1)
flex_university
可解释性机器学习与金融科技机器学习深度学习金融
可解释性机器学习——从金融科技视角(1)内容摘要:可解释性的重要性文章目录可解释性机器学习——从金融科技视角(1)1、过程为什么重要2、可解释性机器学习模型能做到什么3、什么时候不需要可解释性1、过程为什么重要尽管机器学习模型表现良好,但单一指标(如分类准确性)是对大多数实际任务的不完整表述。(Doshi-Velez&Kim2017)。某些任务不仅需要得到预测结果,更需要解释模型是如何得出预测的。
- 基于Pytorch的语音情感识别系统
鱼弦
人工智能时代pytorch人工智能python
基于Pytorch的语音情感识别系统介绍语音情感识别(SpeechEmotionRecognition,SER)是指通过分析和处理人的语音信号来识别其情感状态。常见的情感状态包括愤怒、喜悦、悲伤、惊讶等。基于Pytorch的语音情感识别系统使用深度学习技术,通过训练神经网络模型来实现情感识别任务。应用使用场景客户服务中心:自动识别客户情绪,提供有针对性的服务。智能语音助手:提升人机交互体验,更加智
- 大规模语言模型构建流程
人工智能技术笔记
语言模型人工智能自然语言处理
大规模语言模型1.大语言模型大规模语言模型(LargeLanguageModels,LLM),也称大语言模型,是一种由包含数百亿以上参数的深度神经网络构建的语言模型,通常使用自监督学习方法通过大量无标注文本进行训练。2.预训练语言模型受到计算机视觉领域采用ImageNet对模型进行一次预训练,使得模型可以通过海量图像充分学习如何提取特征,然后再根据任务目标进行模型精调的预训练范式影响,自然语言处理
- Python简介
Gao_xu_sheng
python开发语言
Python前言Python一直是一门优秀的编程语言,不仅简洁、易用,而且功能强大,它能做到的事情太多了,既可用于开发桌面应用,也可用于做网络编程,网络爬虫,还有很重要的领域就是AI大模型开发。近年来,随着人工智能(AI)和机器学习(ML)领域的迅猛发展,Python在这些前沿技术中扮演了至关重要的角色,特别是在构建和训练大规模机器学习方面。Python拥有丰富的库和框架,这些工具极大地促进了AI
- 论文阅读方法
某风吾起
work哲学与人生论文阅读
文章目录步骤一:对论文进行自我判断阅读题目和关键词。阅读摘要阅读总结要点步骤二:阅读文章阅读图表和图表的注释阅读引言阅读实验部分阅读结果和作者对结果的讨论(创新点)要点步骤三:精度论文回答问题1回答问题2回答问题3要点步骤一:对论文进行自我判断阅读题目和关键词。观察这些关键词是否与你的研究的内容有关。如果不相干,可以随时停止,换篇文章看。阅读摘要摘要一般包含了整篇文章的主要内容,是非常非常重要的部
- PyTorch系列教程:编写高效模型训练流程
梦想画家
人工智能#pythonpytorch人工智能python
当使用PyTorch开发机器学习模型时,建立一个有效的训练循环是至关重要的。这个过程包括组织和执行对数据、参数和计算资源的操作序列。让我们深入了解关键组件,并演示如何构建一个精细的训练循环流程,有效地处理数据处理,向前和向后传递以及参数更新。模型训练流程PyTorch训练循环流程通常包括:加载数据批量处理执行正向传播计算损失反向传播更新权重一个典型的训练流程将这些步骤合并到一个迭代过程中,在数据集
- 新一代 AI 软件Manus 将重新将AI市场大洗牌
CircuitWizard
人工智能
Manus是一家专注于手部追踪、虚拟现实(VR)和增强现实(AR)技术的公司,其新一代AI软件结合了先进的机器学习和计算机视觉技术,致力于提升人机交互的自然性和效率。以下是关于Manus新一代AI软件的详细介绍及其核心功能:1.核心技术与创新Manus的AI软件基于以下技术突破:高精度手部追踪:通过深度学习算法和摄像头/传感器数据,实时捕捉手部骨骼、关节和肌肉的细微动作,精度可达亚毫米级,支持复杂
- 【自然语言处理-NLP】情感分析与主题建模
云博士的AI课堂
深度学习哈佛博后带你玩转机器学习自然语言处理人工智能情感分析主题建模深度学习机器学习NLP
以下内容详细剖析了NLP中情感分析(SentimentAnalysis)和主题建模(TopicModeling)的技术与方法,分别展示如何从文本中提取情感倾向和潜在主题,并提供示例代码和讲解,可在Python环境下直接运行。目录情感分析(SentimentAnalysis)1.1概念与方法概览1.2传统机器学习方法1.3深度学习与预训练模型1.4代码示例:基于机器学习的情感分类主题建模(Topic
- 搜广推校招面经三十八
Y1nhl
搜广推面经算法pytorch推荐算法搜索算法机器学习
字节推荐算法一、场景题:在抖音场景下为用户推荐广告词,吸引用户点击搜索,呈现广告这一流程的关键点以及可能遇到的困难。二、Transformer中对梯度消失或者梯度爆炸的处理在Transformer模型中,梯度消失和梯度爆炸是深度学习中常见的问题,尤其是在处理长序列数据时。为了克服这些问题,Transformer采用了一系列技术:2.1.残差连接(ResidualConnections)每个子层(包
- 【深度学习】PyTorch v2.6 Overview
OpenSeek
人工智能#机器学习#深度学习pythonpytorch人工智能
PyTorchv2.6OverviewPythonAPILibrariesPyTorch是一个优化的张量库,用于使用GPU和CPU进行深度学习。PythonAPI序号API名称解释1torchPyTorch核心库(中文:火炬)PyTorch的核心库,提供了张量操作、自动求导等基础功能。2torch.nn神经网络模块包含构建神经网络所需的各种模块,如层、损失函数等。3torch.nn.functio
- 2020年精排模型调研
Marcus-Bao
机器不学习人工智能机器学习大数据算法
❝本文经作者同意转载自:https://zhuanlan.zhihu.com/p/335781101作者:Ruhjkg编辑:MarcusBao谢绝任何形式的二次转载!❞2020年精排模型调研前言最近由于工作需要调研了一下2020年关于精排模型的进展。在广告推荐领域的CTR预估问题上,早期以LR+人工特征工程为主的机器学习方法,但由于人工组合特征工程成本较高,不同任务难以复用。后面FM因子分解机提出
- PyTorch 显存分配不均匀
LutingWang
debugpytorch人工智能python
在使用PyTorch进行深度学习训练时,可能会遇到GPU0的显存占用明显高于其他GPU的情况。这可能导致显存不足,影响训练效率。排查思路:开启两个Shell,ShellA用于运行训练脚本,ShellB用于实时监控显存。在ShellA运行训练脚本。在另一个shell中运行nvidia-smi-l1。这个命令会每秒刷新一次nvidia-smi的结果,方便实时观察各GPU显存的变化情况。观察GPU0何时
- PyTorch 训练循环全攻略:从零到精通的深度学习秘籍
吴师兄大模型
PyTorch深度学习pytorch人工智能训练循环LLM大模型python
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- python搭建NPL模型的详细步骤和代码
百锦再@新空间代码工作室
包罗万象python开发语言djangoflaskpygamepip
目录**一、环境准备****二、数据准备****三、文本预处理****1.清理文本****四、特征工程****1.TF-IDF****2.Word2Vec****五、搭建NLP模型****1.逻辑回归****2.LSTM深度学习模型****六、使用预训练的BERT模型****七、模型评估****八、部署模型****总结**1.**人机交互的核心技术**2.**推动AI技术发展的动力**3.**广泛
- 在 PiscTrace 上使用 YOLO 进行预测与 MiDaS 景深补偿:体验纯视觉自动驾驶的数据分析
那雨倾城
PiscTrace人工智能计算机视觉图像处理自动驾驶YOLO视觉检测
随着自动驾驶技术的不断发展,视觉感知系统逐渐成为车辆感知的核心组件。PiscTrace作为一款支持高效视图处理的桌面应用,集成了先进的计算机视觉工具,如YOLO目标检测模型和MiDaS景深估计模型,能够为纯视觉自动驾驶的实现提供强大的支持。通过这两个模型的结合,PiscTrace可以提供高精度的目标识别与环境感知功能,帮助用户进行实时的驾驶数据分析,为决策系统提供宝贵的数据支持。本文将详细介绍如何
- golang深度学习-性能分析
老狼伙计
golang编程语言云原生学习笔记golang深度学习开发语言
性能分析Go语言原生支持在运行时保留重要的特征指标和状态,有许多工具可以分析甚至可视化程序运行的状态和过程。pprof工具:常用于分析资源的使用情况,可以采集程序运行时的多种不同类型的数据(例如CPU占用、内存消耗和协程数量等),并对数据进行分析聚合生成的报告。trace工具:则关注程序运行时的事件(例如协程状态切换,GC的开始和结束、系统调用等等),常用于分析延迟、阻塞和调度等问题。pprof工
- 专业 英语
程序员爱德华
英语专业英语
文章目录一、计算机1.计算机基础(1)计算机组成原理(2)计算机网络(3)数据库(4)编译原理(5)离散数学2.软件开发(1)编程词汇(2)开发术语(3)Linux(4)软件3.就业领域(1)职场(2)芯片(3)自动驾驶(4)嵌入式硬件4.深度学习(1)论文(2)深度学习DL(3)计算机视觉CV(4)自然语言处理NLP(5)推荐系统(6)计算机图形学二、数学三、机械、材料四、医药五、英美计量单位一
- AI与机器学习、深度学习在气候变化预测中的应用
weixin_贾
农业模型气象人必备模型人工智能机器学习深度学习气候数据预测气候变化趋势农业生产气溶胶
全球气候变化是现代社会面临的最重要的环境挑战之一,影响了气温、降水、海平面、农业、生态系统等多个方面。气候变化的驱动因素主要包括温室气体排放、气溶胶浓度、火灾频发、海冰融化、叶绿素变化、农业变化和生态环境变化等。这些因素在全球范围内交互作用,导致复杂的气候变化模式。将学习如何应用ChatGPT、Deepseek辅助Python编程、学习如何下载处理NASA卫星、CMIP6数据。通过机器学习(K-m
- python 虚拟环境介绍
The One Neo
python开发语言
一、pippip介绍很简单,但是在学习深度学习的时候,虽然用过,但也仅仅是用过,对其了解不多,更多的是下载包,相对于pip,用的更多的反而是anaconda和miniconda这两个python包管理器。pip是Python的包管理工具,主要用于安装、更新、卸载Python软件包。它是Python官方推荐的工具,能够从PythonPackageIndex(PyPI)下载并安装符合指定依赖关系的包。
- 2025最新Transformer模型及深度学习前沿技术应用
weixin_贾
PythonMATLABpython深度学习MATLAB编程深度学习模型图神经网络自编码物理信息神经网络目标检测大语言模型
第一章、注意力(Attention)机制1、注意力机制的背景和动机(为什么需要注意力机制?注意力机制的起源和发展里程碑)。2、注意力机制的基本原理(什么是注意力机制?注意力机制的数学表达与基本公式、用机器翻译任务带你了解Attention机制、如何计算注意力权重?)3、注意力机制的主要类型:键值对注意力机制(Key-ValueAttention)、自注意力(Self-Attention)与多头注意
- python版本更新历史_Python3 是否已经完成了取代 Python2 的历史进程?
wongzo
python版本更新历史
最新情况:搞web开发之类的还是用py2的多,但搞数据科学现在基本都py3了,之前不推荐py3是因为它不支持一些3D绘图库,但现在一些机器学习库刚出来的新版有的只支持py3,所以搞数据的还是用py3吧。--------------------------------照目前的情形看,哪怕python3退出历史舞台了python2还会活的好好的!官方倒是想让py2早死早超生,然而天不遂人愿,1:由于p
- tensorflow keras 报错 :No gradients provided for any variable 原因与解决办法
研志必有功
tensorflow报错tensorflow深度学习机器学习神经网络自然语言处理
错误分析Nogradientsprovidedforanyvariable这个意思是没有梯度给已知的所有函数,为什么会出现这个错误呢,因为在深度学习中,梯度的更新是由于反向传播算法的实现的,如果损失函数没有与已知的任何(除输入)层关联,那么,损失函数就无法求出关于各个函数的梯度,导致错误解决办法例如损失函数defcontrastive_loss_layer(left_inputs,right_in
- TensorFlow的基本框架和理解-初学者通过这一篇文章就够了
无人不智能,机器不学习
TensorFlowTensorFlow基本框架python
tensorflow的理解Tensorflow是一种机器学习框架,如果我们有大量的数据,我们可以利用他协助医生检查糖尿病性视网膜病变来预防患者失明等应用新版本中一个有趣的功能是eagerexecution,允许用户在不创建图形的情况下运行tensorflow代码,一种动态图机制它是一个命令式、由运行定义的接口,一旦从Python被调用,其操作立即被执行。这使得入门TensorFlow变的更简单,也
- cv君独家视角 | AI内幕系列十四:【手机、相机防抖大揭秘】数字防抖、鸡头防抖、光学防抖、AI防抖等(附源码+长期更新)
cv君
原创项目级实战项目cv君独家视角AI内幕系列深度学习与计算机视觉精品人工智能aiisp科技python
目录摘要主要防抖技术手机防抖对比某拇指相机技术分析:1.基础介绍2.功能需求2.1功能背景2.2技术背景与技术选型2.3技术方案2.4可行性落地链路2.5竞品调研与市场分析2.6防抖主客观评价源码实现运动防抖步骤:代码实现性能优化与改进代码改进进一步改进与应用深度学习方法示例实时处理与应用示例运动摄影无人机航拍摄像头防抖设备计算资源需求复杂场景处理参数调整和优化实时处理需求误差累积并行和分布式处理
- 基于FPGA的图像中值滤波Verilog实现及MATLAB辅助验证
CodeWG
fpga开发matlab开发语言
基于FPGA的图像中值滤波Verilog实现及MATLAB辅助验证图像处理是计算机视觉和图像识别领域的重要组成部分。其中,中值滤波是一种常用的图像去噪方法,广泛应用于图像增强、边缘检测和特征提取等任务中。本文将介绍基于FPGA的图像中值滤波Verilog实现,并通过MATLAB进行辅助验证。首先,我们需要了解什么是中值滤波。中值滤波是一种非线性滤波器,它的原理是将图像中每个像素的灰度值替换为该像素
- 深入浅出Java Annotation(元注解和自定义注解)
Josh_Persistence
Java Annotation元注解自定义注解
一、基本概述
Annontation是Java5开始引入的新特征。中文名称一般叫注解。它提供了一种安全的类似注释的机制,用来将任何的信息或元数据(metadata)与程序元素(类、方法、成员变量等)进行关联。
更通俗的意思是为程序的元素(类、方法、成员变量)加上更直观更明了的说明,这些说明信息是与程序的业务逻辑无关,并且是供指定的工具或
- mysql优化特定类型的查询
annan211
java工作mysql
本节所介绍的查询优化的技巧都是和特定版本相关的,所以对于未来mysql的版本未必适用。
1 优化count查询
对于count这个函数的网上的大部分资料都是错误的或者是理解的都是一知半解的。在做优化之前我们先来看看
真正的count()函数的作用到底是什么。
count()是一个特殊的函数,有两种非常不同的作用,他可以统计某个列值的数量,也可以统计行数。
在统
- MAC下安装多版本JDK和切换几种方式
棋子chessman
jdk
环境:
MAC AIR,OS X 10.10,64位
历史:
过去 Mac 上的 Java 都是由 Apple 自己提供,只支持到 Java 6,并且OS X 10.7 开始系统并不自带(而是可选安装)(原自带的是1.6)。
后来 Apple 加入 OpenJDK 继续支持 Java 6,而 Java 7 将由 Oracle 负责提供。
在终端中输入jav
- javaScript (1)
Array_06
JavaScriptjava浏览器
JavaScript
1、运算符
运算符就是完成操作的一系列符号,它有七类: 赋值运算符(=,+=,-=,*=,/=,%=,<<=,>>=,|=,&=)、算术运算符(+,-,*,/,++,--,%)、比较运算符(>,<,<=,>=,==,===,!=,!==)、逻辑运算符(||,&&,!)、条件运算(?:)、位
- 国内顶级代码分享网站
袁潇含
javajdkoracle.netPHP
现在国内很多开源网站感觉都是为了利益而做的
当然利益是肯定的,否则谁也不会免费的去做网站
&
- Elasticsearch、MongoDB和Hadoop比较
随意而生
mongodbhadoop搜索引擎
IT界在过去几年中出现了一个有趣的现象。很多新的技术出现并立即拥抱了“大数据”。稍微老一点的技术也会将大数据添进自己的特性,避免落大部队太远,我们看到了不同技术之间的边际的模糊化。假如你有诸如Elasticsearch或者Solr这样的搜索引擎,它们存储着JSON文档,MongoDB存着JSON文档,或者一堆JSON文档存放在一个Hadoop集群的HDFS中。你可以使用这三种配
- mac os 系统科研软件总结
张亚雄
mac os
1.1 Microsoft Office for Mac 2011
大客户版,自行搜索。
1.2 Latex (MacTex):
系统环境:https://tug.org/mactex/
&nb
- Maven实战(四)生命周期
AdyZhang
maven
1. 三套生命周期 Maven拥有三套相互独立的生命周期,它们分别为clean,default和site。 每个生命周期包含一些阶段,这些阶段是有顺序的,并且后面的阶段依赖于前面的阶段,用户和Maven最直接的交互方式就是调用这些生命周期阶段。 以clean生命周期为例,它包含的阶段有pre-clean, clean 和 post
- Linux下Jenkins迁移
aijuans
Jenkins
1. 将Jenkins程序目录copy过去 源程序在/export/data/tomcatRoot/ofctest-jenkins.jd.com下面 tar -cvzf jenkins.tar.gz ofctest-jenkins.jd.com &
- request.getInputStream()只能获取一次的问题
ayaoxinchao
requestInputstream
问题:在使用HTTP协议实现应用间接口通信时,服务端读取客户端请求过来的数据,会用到request.getInputStream(),第一次读取的时候可以读取到数据,但是接下来的读取操作都读取不到数据
原因: 1. 一个InputStream对象在被读取完成后,将无法被再次读取,始终返回-1; 2. InputStream并没有实现reset方法(可以重
- 数据库SQL优化大总结之 百万级数据库优化方案
BigBird2012
SQL优化
网上关于SQL优化的教程很多,但是比较杂乱。近日有空整理了一下,写出来跟大家分享一下,其中有错误和不足的地方,还请大家纠正补充。
这篇文章我花费了大量的时间查找资料、修改、排版,希望大家阅读之后,感觉好的话推荐给更多的人,让更多的人看到、纠正以及补充。
1.对查询进行优化,要尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。
2.应尽量避免在 where
- jsonObject的使用
bijian1013
javajson
在项目中难免会用java处理json格式的数据,因此封装了一个JSONUtil工具类。
JSONUtil.java
package com.bijian.json.study;
import java.util.ArrayList;
import java.util.Date;
import java.util.HashMap;
- [Zookeeper学习笔记之六]Zookeeper源代码分析之Zookeeper.WatchRegistration
bit1129
zookeeper
Zookeeper类是Zookeeper提供给用户访问Zookeeper service的主要API,它包含了如下几个内部类
首先分析它的内部类,从WatchRegistration开始,为指定的znode path注册一个Watcher,
/**
* Register a watcher for a particular p
- 【Scala十三】Scala核心七:部分应用函数
bit1129
scala
何为部分应用函数?
Partially applied function: A function that’s used in an expression and that misses some of its arguments.For instance, if function f has type Int => Int => Int, then f and f(1) are p
- Tomcat Error listenerStart 终极大法
ronin47
tomcat
Tomcat报的错太含糊了,什么错都没报出来,只提示了Error listenerStart。为了调试,我们要获得更详细的日志。可以在WEB-INF/classes目录下新建一个文件叫logging.properties,内容如下
Java代码
handlers = org.apache.juli.FileHandler, java.util.logging.ConsoleHa
- 不用加减符号实现加减法
BrokenDreams
实现
今天有群友发了一个问题,要求不用加减符号(包括负号)来实现加减法。
分析一下,先看最简单的情况,假设1+1,按二进制算的话结果是10,可以看到从右往左的第一位变为0,第二位由于进位变为1。
 
- 读《研磨设计模式》-代码笔记-状态模式-State
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
当一个对象的内在状态改变时允许改变其行为,这个对象看起来像是改变了其类
状态模式主要解决的是当控制一个对象状态的条件表达式过于复杂时的情况
把状态的判断逻辑转移到表示不同状态的一系列类中,可以把复杂的判断逻辑简化
如果在
- CUDA程序block和thread超出硬件允许值时的异常
cherishLC
CUDA
调用CUDA的核函数时指定block 和 thread大小,该大小可以是dim3类型的(三维数组),只用一维时可以是usigned int型的。
以下程序验证了当block或thread大小超出硬件允许值时会产生异常!!!GPU根本不会执行运算!!!
所以验证结果的正确性很重要!!!
在VS中创建CUDA项目会有一个模板,里面有更详细的状态验证。
以下程序在K5000GPU上跑的。
- 诡异的超长时间GC问题定位
chenchao051
jvmcmsGChbaseswap
HBase的GC策略采用PawNew+CMS, 这是大众化的配置,ParNew经常会出现停顿时间特别长的情况,有时候甚至长到令人发指的地步,例如请看如下日志:
2012-10-17T05:54:54.293+0800: 739594.224: [GC 739606.508: [ParNew: 996800K->110720K(996800K), 178.8826900 secs] 3700
- maven环境快速搭建
daizj
安装mavne环境配置
一 下载maven
安装maven之前,要先安装jdk及配置JAVA_HOME环境变量。这个安装和配置java环境不用多说。
maven下载地址:http://maven.apache.org/download.html,目前最新的是这个apache-maven-3.2.5-bin.zip,然后解压在任意位置,最好地址中不要带中文字符,这个做java 的都知道,地址中出现中文会出现很多
- PHP网站安全,避免PHP网站受到攻击的方法
dcj3sjt126com
PHP
对于PHP网站安全主要存在这样几种攻击方式:1、命令注入(Command Injection)2、eval注入(Eval Injection)3、客户端脚本攻击(Script Insertion)4、跨网站脚本攻击(Cross Site Scripting, XSS)5、SQL注入攻击(SQL injection)6、跨网站请求伪造攻击(Cross Site Request Forgerie
- yii中给CGridView设置默认的排序根据时间倒序的方法
dcj3sjt126com
GridView
public function searchWithRelated() {
$criteria = new CDbCriteria;
$criteria->together = true; //without th
- Java集合对象和数组对象的转换
dyy_gusi
java集合
在开发中,我们经常需要将集合对象(List,Set)转换为数组对象,或者将数组对象转换为集合对象。Java提供了相互转换的工具,但是我们使用的时候需要注意,不能乱用滥用。
1、数组对象转换为集合对象
最暴力的方式是new一个集合对象,然后遍历数组,依次将数组中的元素放入到新的集合中,但是这样做显然过
- nginx同一主机部署多个应用
geeksun
nginx
近日有一需求,需要在一台主机上用nginx部署2个php应用,分别是wordpress和wiki,探索了半天,终于部署好了,下面把过程记录下来。
1. 在nginx下创建vhosts目录,用以放置vhost文件。
mkdir vhosts
2. 修改nginx.conf的配置, 在http节点增加下面内容设置,用来包含vhosts里的配置文件
#
- ubuntu添加admin权限的用户账号
hongtoushizi
ubuntuuseradd
ubuntu创建账号的方式通常用到两种:useradd 和adduser . 本人尝试了useradd方法,步骤如下:
1:useradd
使用useradd时,如果后面不加任何参数的话,如:sudo useradd sysadm 创建出来的用户将是默认的三无用户:无home directory ,无密码,无系统shell。
顾应该如下操作:
- 第五章 常用Lua开发库2-JSON库、编码转换、字符串处理
jinnianshilongnian
nginxlua
JSON库
在进行数据传输时JSON格式目前应用广泛,因此从Lua对象与JSON字符串之间相互转换是一个非常常见的功能;目前Lua也有几个JSON库,本人用过cjson、dkjson。其中cjson的语法严格(比如unicode \u0020\u7eaf),要求符合规范否则会解析失败(如\u002),而dkjson相对宽松,当然也可以通过修改cjson的源码来完成
- Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
yaerfeng1989
timerquartz定时器
原创整理不易,转载请注明出处:Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
代码下载地址:http://www.zuidaima.com/share/1772648445103104.htm
有两种流行Spring定时器配置:Java的Timer类和OpenSymphony的Quartz。
1.Java Timer定时
首先继承jav
- Linux下df与du两个命令的差别?
pda158
linux
一、df显示文件系统的使用情况,与du比較,就是更全盘化。 最经常使用的就是 df -T,显示文件系统的使用情况并显示文件系统的类型。 举比例如以下: [root@localhost ~]# df -T Filesystem Type &n
- [转]SQLite的工具类 ---- 通过反射把Cursor封装到VO对象
ctfzh
VOandroidsqlite反射Cursor
在写DAO层时,觉得从Cursor里一个一个的取出字段值再装到VO(值对象)里太麻烦了,就写了一个工具类,用到了反射,可以把查询记录的值装到对应的VO里,也可以生成该VO的List。
使用时需要注意:
考虑到Android的性能问题,VO没有使用Setter和Getter,而是直接用public的属性。
表中的字段名需要和VO的属性名一样,要是不一样就得在查询的SQL中
- 该学习笔记用到的Employee表
vipbooks
oraclesql工作
这是我在学习Oracle是用到的Employee表,在该笔记中用到的就是这张表,大家可以用它来学习和练习。
drop table Employee;
-- 员工信息表
create table Employee(
-- 员工编号
EmpNo number(3) primary key,
-- 姓