作业内容:自己设计卷积核大小,池化层、以及线性层的参数,要求有三个卷积层,三个激活层、三个池化层以及三个线性层,用自己设计的卷积网络训练MNIST数据集。
选择下图结构的卷积神经网络来进行训练:
步骤:
具体代码如下:
batch_size = 64
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
train_dataset = datasets.MNIST(root='../dataset/mnist', train=True, download=True, transform=transform)
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
test_dataset = datasets.MNIST(root='../dataset/mnist', train=False, download=True, transform=transform)
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=3)
self.conv2 = torch.nn.Conv2d(10, 20, kernel_size=2)
self.conv3 = torch.nn.Conv2d(20, 30, kernel_size=3)
self.pooling = torch.nn.MaxPool2d(2)
self.fc1 = torch.nn.Linear(120, 60)
self.fc2 = torch.nn.Linear(60, 30)
self.fc3 = torch.nn.Linear(30, 10)
def forward(self, x):
batch_size = x.size(0)
x = F.relu(self.pooling(self.conv1(x)))
x = F.relu(self.pooling(self.conv2(x)))
x = F.relu(self.pooling(self.conv3(x)))
x = x.view(batch_size, -1)
x = self.fc1(x)
x = self.fc2(x)
x = self.fc3(x)
return x
model = Net()
device=torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model.to(device)
criterion = torch.nn.CrossEntropyLoss()
optimizer=optim.SGD(model.parameters(),lr=0.01,momentum=0.5)
def train(epoch):
running_loss=0.0
for batch_idx,data in enumerate(train_loader,0):
inputs,target=data
inputs,target=inputs.to(device),target.to(device)
optimizer.zero_grad()
outputs=model(inputs)
loss=criterion(outputs,target)
loss.backward()
optimizer.step()
running_loss+=loss.item()
if batch_idx%300==299:
print('[%d,%.5d] loss:%.3f' % (epoch + 1, batch_idx + 1, running_loss / 2000))
running_loss=0.0
def test():
correct=0
total=0
with torch.no_grad():
for data in test_loader:
inputs, target=data
inputs,target=inputs.to(device),target.to(device)
outputs=model(inputs)
_,predicted=torch.max(outputs.data,dim=1)
total+=target.size(0)
correct+=(predicted==target).sum().item()
print('Accuracy on test set:%d %% [%d%d]' %(100*correct/total,correct,total))
if __name__=='__main__':
for epoch in range(10):
train(epoch)
test()
import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim
batch_size = 64
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
train_dataset = datasets.MNIST(root='../dataset/mnist', train=True, download=True, transform=transform)
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
test_dataset = datasets.MNIST(root='../dataset/mnist', train=False, download=True, transform=transform)
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=3)
self.conv2 = torch.nn.Conv2d(10, 20, kernel_size=2)
self.conv3 = torch.nn.Conv2d(20, 30, kernel_size=3)
self.pooling = torch.nn.MaxPool2d(2)
self.fc1 = torch.nn.Linear(120, 60)
self.fc2 = torch.nn.Linear(60, 30)
self.fc3 = torch.nn.Linear(30, 10)
def forward(self, x):
batch_size = x.size(0)
x = F.relu(self.pooling(self.conv1(x)))
x = F.relu(self.pooling(self.conv2(x)))
x = F.relu(self.pooling(self.conv3(x)))
x = x.view(batch_size, -1)
x = self.fc1(x)
x = self.fc2(x)
x = self.fc3(x)
return x
model = Net()
device=torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model.to(device)
criterion = torch.nn.CrossEntropyLoss()
optimizer=optim.SGD(model.parameters(),lr=0.01,momentum=0.5)
def train(epoch):
running_loss=0.0
for batch_idx,data in enumerate(train_loader,0):
inputs,target=data
inputs,target=inputs.to(device),target.to(device)
optimizer.zero_grad()
outputs=model(inputs)
loss=criterion(outputs,target)
loss.backward()
optimizer.step()
running_loss+=loss.item()
if batch_idx%300==299:
print('[%d,%.5d] loss:%.3f' % (epoch + 1, batch_idx + 1, running_loss / 2000))
running_loss=0.0
def test():
correct=0
total=0
with torch.no_grad():
for data in test_loader:
inputs, target=data
inputs,target=inputs.to(device),target.to(device)
outputs=model(inputs)
_,predicted=torch.max(outputs.data,dim=1)
total+=target.size(0)
correct+=(predicted==target).sum().item()
print('Accuracy on test set:%d %% [%d%d]' %(100*correct/total,correct,total))
if __name__=='__main__':
for epoch in range(10):
train(epoch)
test()
运行结果如下: