《MATLAB 神经网络43个案例分析》是MATLAB技术论坛(www.matlabsky.com)策划,由王小川老师主导,2013年北京航空航天大学出版社出版的关于MATLAB为工具的一本MATLAB实例教学书籍,是在《MATLAB神经网络30个案例分析》的基础上修改、补充而成的,秉承着“理论讲解—案例分析—应用扩展”这一特色,帮助读者更加直观、生动地学习神经网络。
《MATLAB神经网络43个案例分析》共有43章,内容涵盖常见的神经网络(BP、RBF、SOM、Hopfield、Elman、LVQ、Kohonen、GRNN、NARX等)以及相关智能算法(SVM、决策树、随机森林、极限学习机等)。同时,部分章节也涉及了常见的优化算法(遗传算法、蚁群算法等)与神经网络的结合问题。此外,《MATLAB神经网络43个案例分析》还介绍了MATLAB R2012b中神经网络工具箱的新增功能与特性,如神经网络并行计算、定制神经网络、神经网络高效编程等。
近年来随着人工智能研究的兴起,神经网络这个相关方向也迎来了又一阵研究热潮,由于其在信号处理领域中的不俗表现,神经网络方法也在不断深入应用到语音和图像方向的各种应用当中,本文结合书中案例,对其进行仿真实现,也算是进行一次重新学习,希望可以温故知新,加强并提升自己对神经网络这一方法在各领域中应用的理解与实践。自己正好在多抓鱼上入手了这本书,下面开始进行仿真示例,主要以介绍各章节中源码应用示例为主,本文主要基于MATLAB2015b(32位)平台仿真实现,这是本书的第四章通过神经网络遗传算法函数极值寻优的实例,话不多说,开始!
打开MATLAB,点击“主页”,点击“打开”,找到示例文件
选中Genetic.m,点击“打开”,依次检查源码文件如下;
适应度函数fun.m
function error = fun(x,inputnum,hiddennum,outputnum,net,inputn,outputn)
%该函数用来计算适应度值
%x input 个体
%inputnum input 输入层节点数
%outputnum input 隐含层节点数
%net input 网络
%inputn input 训练输入数据
%outputn input 训练输出数据
%error output 个体适应度值
%提取
w1=x(1:inputnum*hiddennum);
B1=x(inputnum*hiddennum+1:inputnum*hiddennum+hiddennum);
w2=x(inputnum*hiddennum+hiddennum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum);
B2=x(inputnum*hiddennum+hiddennum+hiddennum*outputnum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum+outputnum);
%网络进化参数
net.trainParam.epochs=20;
net.trainParam.lr=0.1;
net.trainParam.goal=0.00001;
net.trainParam.show=100;
net.trainParam.showWindow=0;
%网络权值赋值
net.iw{1,1}=reshape(w1,hiddennum,inputnum);
net.lw{2,1}=reshape(w2,outputnum,hiddennum);
net.b{1}=reshape(B1,hiddennum,1);
net.b{2}=B2;
%网络训练
net=train(net,inputn,outputn);
an=sim(net,inputn);
error=sum(abs(an-outputn));
打开BP.m,点击“运行”,生成inputps与outputps数据,保存到data中
%% 第4章 神经网络遗传算法函数极值寻优
%
% <html>
% <table border="0" width="600px" id="table1"> <tr> <td><b><font size="2">该案例作者申明:</font></b></td> </tr> <tr><td><span class="comment"><font size="2">1:本人长期驻扎在此<a target="_blank" href="http://www.ilovematlab.cn/forum-158-1.html"><font color="#0000FF">板块</font></a>里,对该案例提问,做到有问必答。本套书籍官方网站为:<a href="http://video.ourmatlab.com">video.ourmatlab.com</a></font></span></td></tr><tr> <td><font size="2">2:点此<a href="http://union.dangdang.com/transfer/transfer.aspx?from=P-284318&backurl=http://www.dangdang.com/">从当当预定本书</a>:<a href="http://union.dangdang.com/transfer/transfer.aspx?from=P-284318&backurl=http://www.dangdang.com/">《Matlab神经网络30个案例分析》</a>。</td></tr><tr> <td><p class="comment"></font><font size="2">3</font><font size="2">:此案例有配套的教学视频,视频下载方式<a href="http://video.ourmatlab.com/vbuy.html">video.ourmatlab.com/vbuy.html</a></font><font size="2">。 </font></p></td> </tr> <tr> <td><span class="comment"><font size="2"> 4:此案例为原创案例,转载请注明出处(《Matlab神经网络30个案例分析》)。</font></span></td> </tr> <tr> <td><span class="comment"><font size="2"> 5:若此案例碰巧与您的研究有关联,我们欢迎您提意见,要求等,我们考虑后可以加在案例里。</font></span></td> </tr> </table>
% </html>
%% 清空环境变量
clc
clear
tic
%% 训练数据预测数据提取及归一化
%下载输入输出数据
load data1 input output
%从1到2000间随机排序
k=rand(1,4000);
[m,n]=sort(k);
%找出训练数据和预测数据
input_train=input(n(1:3900),:)';
output_train=output(n(1:3900),:)';
input_test=input(n(3901:4000),:)';
output_test=output(n(3901:4000),:)';
%选连样本输入输出数据归一化
[inputn,inputps]=mapminmax(input_train);
[outputn,outputps]=mapminmax(output_train);
%% BP网络训练
% %初始化网络结构
net=newff(inputn,outputn,5);
net.trainParam.epochs=100;
net.trainParam.lr=0.1;
net.trainParam.goal=0.0000004;
%网络训练
net=train(net,inputn,outputn);
%% BP网络预测
%预测数据归一化
inputn_test=mapminmax('apply',input_test,inputps);
%网络预测输出
an=sim(net,inputn_test);
%网络输出反归一化
BPoutput=mapminmax('reverse',an,outputps);
%% 结果分析
figure(1)
plot(BPoutput,':og')
hold on
plot(output_test,'-*');
legend('预测输出','期望输出','fontsize',12)
title('BP网络预测输出','fontsize',12)
xlabel('样本','fontsize',12)
ylabel('输出','fontsize',12)
%预测误差
error=BPoutput-output_test;
figure(2)
plot(error,'-*')
title('神经网络预测误差')
figure(3)
plot((output_test-BPoutput)./BPoutput,'-*');
title('神经网络预测误差百分比')
errorsum=sum(abs(error))
toc
save data net inputps outputps
% web browser http://www.matlabsky.com/thread-11198-1-1.html
%%
% <html>
% <table width="656" align="left" > <tr><td align="center"><p><font size="2"><a href="http://video.ourmatlab.com/">Matlab神经网络30个案例分析</a></font></p><p align="left"><font size="2">相关论坛:</font></p><p align="left"><font size="2">《Matlab神经网络30个案例分析》官方网站:<a href="http://video.ourmatlab.com">video.ourmatlab.com</a></font></p><p align="left"><font size="2">Matlab技术论坛:<a href="http://www.matlabsky.com">www.matlabsky.com</a></font></p><p align="left"><font size="2">M</font><font size="2">atlab函数百科:<a href="http://www.mfun.la">www.mfun.la</a></font></p><p align="left"><font size="2">Matlab中文论坛:<a href="http://www.ilovematlab.com">www.ilovematlab.com</a></font></p></td> </tr></table>
% </html>
运行结果如下图所示:
依次点击Performance,Training State,Regression可分别得到对应图示。
打开遗传算法主函数Genetic.m,源码如下:
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%功能:该代码为基于神经网络遗传算法的系统极值寻优
%环境:Win7,Matlab2015b
%Modi: C.S
%时间:2022-06-08
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 清空环境变量
clc
clear
%% 初始化遗传算法参数
%初始化参数
tic
maxgen=100; %进化代数,即迭代次数
sizepop=20; %种群规模
pcross=[0.4]; %交叉概率选择,0和1之间
pmutation=[0.2]; %变异概率选择,0和1之间
lenchrom=[1 1]; %每个变量的字串长度,如果是浮点变量,则长度都为1
bound=[-5 5;-5 5]; %数据范围
individuals=struct('fitness',zeros(1,sizepop), 'chrom',[]); %将种群信息定义为一个结构体
avgfitness=[]; %每一代种群的平均适应度
bestfitness=[]; %每一代种群的最佳适应度
bestchrom=[]; %适应度最好的染色体
%% 初始化种群计算适应度值
% 初始化种群
for i=1:sizepop
%随机产生一个种群
individuals.chrom(i,:)=Code(lenchrom,bound);
x=individuals.chrom(i,:);
%计算适应度
individuals.fitness(i)=fun(x); %染色体的适应度
end
%找最好的染色体
[bestfitness bestindex]=min(individuals.fitness);
bestchrom=individuals.chrom(bestindex,:); %最好的染色体
avgfitness=sum(individuals.fitness)/sizepop; %染色体的平均适应度
% 记录每一代进化中最好的适应度和平均适应度
trace=[avgfitness bestfitness];
%% 迭代寻优
% 进化开始
for i=1:maxgen
%i
% 选择
individuals=Select(individuals,sizepop);
avgfitness=sum(individuals.fitness)/sizepop;
%交叉
individuals.chrom=Cross(pcross,lenchrom,individuals.chrom,sizepop,bound);
% 变异
individuals.chrom=Mutation(pmutation,lenchrom,individuals.chrom,sizepop,[i maxgen],bound);
% 计算适应度
for j=1:sizepop
x=individuals.chrom(j,:); %解码
individuals.fitness(j)=fun(x);
end
%找到最小和最大适应度的染色体及它们在种群中的位置
[newbestfitness,newbestindex]=min(individuals.fitness);
[worestfitness,worestindex]=max(individuals.fitness);
% 代替上一次进化中最好的染色体
if bestfitness>newbestfitness
bestfitness=newbestfitness;
bestchrom=individuals.chrom(newbestindex,:);
end
individuals.chrom(worestindex,:)=bestchrom;
individuals.fitness(worestindex)=bestfitness;
avgfitness=sum(individuals.fitness)/sizepop;
trace=[trace;avgfitness bestfitness]; %记录每一代进化中最好的适应度和平均适应度
end
%进化结束
%% 结果分析
[r c]=size(trace);
plot([1:r]',trace(:,2),'r-');
title('适应度曲线','fontsize',12);
xlabel('进化代数','fontsize',12);ylabel('适应度','fontsize',12);
axis([0,100,0,1])
disp('适应度 变量');
x=bestchrom;
% 窗口显示
disp([bestfitness x]);
toc
% web browser www.matlabsky.com
点击“运行”,开始仿真,输出仿真结果如下:
适应度 变量
-0.0529 0.0019 -0.0139
时间已过 26.419708 秒。
遗传算法(Genetic Algorithms,GA),顾名思义就是参考生物学中的遗传学为基础,进行进化选择,变异选择等操作,它是1962年美国人提出,模拟自然界遗传和生物进化论而成的一种并行随机搜索最优化方法。本章与上一章的优化方法略有不同,但最终目的仍是通过遗传算法对BP神经网络进行权值阈值选择进行调整,在本章中就是为了对非线性函数进行极值的寻优。
本示例仅供大家学习参考,对本章内容感兴趣或者想充分学习了解的,建议去研习书中第四章节的内容。后期会对其中一些知识点在自己理解的基础上进行补充,欢迎大家一起学习交流。