使用python第三方模块face_recognition实现人脸识别,并根据已命名的图片把名字显示在屏幕上。
pip install cmake
pip install boost
pip install dlib
pip install face_recognition
pip install opencv-python
如果未安装pip等需要工具,请自行百度。
如果速度慢,可以在命令后加 -i [国内源]
如
pip install opencv-python -i https://mirrors.aliyun.com/pypi/simple
我用的三个国内源:
阿里云 https://mirrors.aliyun.com/pypi/simple
清华大学 https://pypi.tuna.tsinghua.edu.cn/simple
中国科技大学 https://pypi.mirrors.ustc.edu.cn/simple
import face_recognition
import cv2
import os
import numpy
from PIL import Image, ImageDraw, ImageFont
def cv2ImgAddText(img, text, left, top, textColor=(0, 255, 0), textSize=20):
if (isinstance(img, numpy.ndarray)): # 判断是否OpenCV图片类型
img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
# 创建一个可以在给定图像上绘图的对象
draw = ImageDraw.Draw(img)
# 字体的格式
fontStyle = ImageFont.truetype(
"font/simsun.ttc", textSize, encoding="utf-8")
# 绘制文本
draw.text((left, top), text, textColor, font=fontStyle)
# 转换回OpenCV格式
return cv2.cvtColor(numpy.asarray(img), cv2.COLOR_RGB2BGR)
def face(path):
# 存储知道人名列表
global face_locations, face_names
known_names = []
# 存储知道的特征值
known_encodings = []
for image_name in os.listdir(path):
print(path + image_name)
load_image = face_recognition.load_image_file(path + image_name) # 加载图片
image_face_encoding = face_recognition.face_encodings(load_image)[0] # 获得128维特征值
known_names.append(image_name.split(".")[0])
known_encodings.append(image_face_encoding)
print(known_encodings)
# 打开摄像头,0表示内置摄像头
video_capture = cv2.VideoCapture(1)
process_this_frame = True
while True:
ret, frame = video_capture.read()
# opencv的图像是BGR格式的,而我们需要是的RGB格式的,因此需要进行一个转换。
rgb_frame = frame[:, :, ::-1]
if process_this_frame:
face_locations = face_recognition.face_locations(rgb_frame) # 获得所有人脸位置
face_encodings = face_recognition.face_encodings(rgb_frame, face_locations) # 获得人脸特征值
face_names = [] # 存储出现在画面中人脸的名字
for face_encoding in face_encodings:
matches = face_recognition.compare_faces(known_encodings, face_encoding, tolerance=0.3)
if True in matches:
first_match_index = matches.index(True)
name = known_names[first_match_index]
else:
name = "unknown"
face_names.append(name)
process_this_frame = not process_this_frame
# 将捕捉到的人脸显示出来
for (top, right, bottom, left), name in zip(face_locations, face_names):
cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2) # 画人脸矩形框
# 加上人名标签
cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED)
font = cv2.FONT_HERSHEY_DUPLEX
# cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1)
frame=cv2ImgAddText(frame, name, left + 32, bottom - 32, textColor=(255, 255, 255), textSize=32)
cv2.imshow('frame', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
video_capture.release()
cv2.destroyAllWindows()
if __name__ == '__main__':
face("./images/") # 存放已知图像路径
其中,face()是识别的方法,cv2ImgAddText()是解决图片添加文字时的中文乱码问题。
matches = face_recognition.compare_faces(known_encodings, face_encoding, tolerance=0.3)是对数据进行比对,tolerance越小,进度越高,一般0.6是性能最好的。