【PAT】1018 Public Bike Management 思路+测试样例 dij+DFS

测试用例:

10 2  2 2
2 10
0 1 1
1 2 1

3 0->1->2 5


10 3 3 3
11 0 10
0 1 1
1 2 1
2 3 1

0 0->1->2->3 6


10 4 4 5
6 7 5 0
0 1 1
0 2 1
1 3 1
2 3 1
3 4 1

3 0->2->3->4 0


10 4 4 4
6 0 11 0
0 1 1
1 2 1
2 3 1
3 4 1

4 0->1->2->3->4 1


10 4 4 8
0 11 3 0
0 1 2
0 2 3
0 3 2
1 2 1
2 3 1
1 4 2
2 4 1
3 4 2
0 0->2->4 1

10 6 6 8
8 9 4 6 7 2
0 1 1
0 2 1
1 3 1
2 3 1
3 4 1
3 5 2
4 6 1
5 6 1
0 0->1->3->4->6 0

  1. 出发的时候,一边走要一边平衡路上的车数量,也就是,例如先遇到一个需要2个的自行车摊,再遇到一个多出3个的自行车摊,还是需要从出发点携带2个自行车,否则,遇到第一个需要的自行车摊时,无法平衡;后面遇到的这个多出3个的自行车摊,如果没有被消耗掉,那还要带回到自行车中心。后面多出来的这3个,是无法弥补到前面缺乏自行车的地方的。一次路过,路上的自行车数都要平衡
  2. 可以先保存pre路径,然后再dfs来遍历,达到查找等长,多条件判断路径的目的
#include 
#include

#include

#include
using namespace std;
#define INF 0x3FFFFFFF
void dfs(vector<int>* pre, int start, int end, vector<int>* stationBikes, vector<int>* path);
struct Path {
    int end;
    int length;
    Path(int end, int length) :end(end), length(length) {}
};
void Print(int length, bool* array) {
    for (int i = 0; i < length; i++)
    {
        cout << array[i] << " ";
    }
    cout << endl;
}

int minNeed = INF, minRemain = INF;
vector<int> pathSave;
void Dijtra(int stationNum, int problemIndex, vector<int>* stationBikes, vector<Path>* graph) {
    bool* visited = new bool[stationNum]; // 保存是否访问过
    vector<int>* pre = new vector<int>[stationNum]; // 保存每个站点的前序节点 
    int* pathLength = new int[stationNum]; // 保存0到每个站点的路径长度
    for (int i = 0; i < stationNum; i++)
    {
        visited[i] = false;
        pre[i].clear();
        pathLength[i] = INF;
    }
    visited[0] = true;
    pathLength[0] = 0;
    bool hasUnvisited = true;
    for (int i = 0; i < graph[0].size(); i++)
    {
        pre[graph[0][i].end].push_back(0);
        pathLength[graph[0][i].end] = graph[0][i].length;
    }
    while (hasUnvisited) {
        hasUnvisited = false;
        int NextNode = 0, min = INF;
        // 对所有节点,找未访问过的最小路径点
        for (int i = 1; i < stationNum; i++)
        {
            if (visited[i] == false && pathLength[i] < min)
            {
                min = pathLength[i];
                NextNode = i;
                hasUnvisited = true;
            }
        }
        if (hasUnvisited == false || visited[problemIndex] == true)
        {
            // 剩余节点不连通或者全部节点已访问,
            // 或者 有问题的那个节点已经被访问了
            break;
        }
        vector<Path> paths = graph[NextNode];
        visited[NextNode] = true;
        for (int i = 0; i < paths.size(); i++)
        {
            if (visited[paths[i].end] == false && paths[i].length < INF)
            {
                if (paths[i].length + pathLength[NextNode] < pathLength[paths[i].end])
                {
                    // 起点的最短路径+当前路径长< 之前的终点的长,更新最短路径
                    pathLength[paths[i].end] = paths[i].length + pathLength[NextNode];
                    pre[paths[i].end].clear();
                    pre[paths[i].end].push_back(NextNode);
                }
                else if (paths[i].length + pathLength[NextNode] == pathLength[paths[i].end])
                {
                    pre[paths[i].end].push_back(NextNode);
                }
            }
        }
    }
    //打印一下路径前序
    /*
    for (int i = 0; i < stationNum; i++)
    {
     cout << i << ": ";
     for (auto c : pre[i]) {
      cout << c << " ";
     }
     cout << endl;
    }*/
    vector<int> path;
    dfs(pre, 0, problemIndex, stationBikes, &path);
    cout << minNeed<<" ";
    for (int i = pathSave.size()-1; i >=0; i--)
    {
        cout << pathSave[i];
        if (i>=1)
        {
            cout << "->";
        }
    }
    cout <<" " << minRemain;
    
}
void dfs(vector<int>* pre, int start, int end, vector<int>* stationBikes, vector<int>* path) {
    if (end==0)
    {
        path->push_back(end);
        // 叶子节点:
        int need = 0, remain = 0;
        for (int i = path->size()-1; i >=0; i--)
        {
            int id = (*path)[i];
            if ((*stationBikes)[id]>0)
            {
                remain += (*stationBikes)[id];
            }
            else {
                if (remain>abs((*stationBikes)[id]))
                {
                    remain-=abs((*stationBikes)[id]);
                }
                else {
                    need+=abs((*stationBikes)[id])-remain;
                    remain = 0;
                }
            }

        }
        if (need<minNeed)
        {
            minNeed = need;
            minRemain = remain;
            pathSave = *path;
        }
        else if (need == minNeed && remain<minRemain) {
            minRemain = remain;
            pathSave = *path;
        }
        (*path).pop_back(); 
        return;
    }
    
    (*path).push_back(end);
    vector<int> pathEnd = pre[end];
    for (int i = 0; i < pathEnd.size(); i++)
    {
        dfs(pre,start, pathEnd[i],stationBikes,path);
    }
    (*path).pop_back();
    
}


int main()
{
    int capicity, stationNum, problemIndex, paths;
    cin >> capicity >> stationNum >> problemIndex >> paths;
    int leftNum;
    vector<int> stationBikes;
    stationBikes.push_back(0);
    for (int i = 0; i < stationNum; i++)
    {
        cin >> leftNum;
        stationBikes.push_back(leftNum-capicity/2);
    }
    int aim, end, length;
    vector<Path>* graph = new vector<Path>[stationNum + 1];
    for (int i = 0; i < paths; i++)
    {
        cin >> aim >> end >> length;
        graph[aim].push_back(Path(end, length));
        graph[end].push_back(Path(aim, length));
    }
    Dijtra( stationNum + 1, problemIndex, &stationBikes, graph);
}

你可能感兴趣的:(c++,算法,PAT,深度优先,图论,算法)