- 强化学习 16G实践以下是基于CQL(Conservative Q-Learning)与QLoRA(Quantized Low-Rank Adaptation)结合的方案相关开源项目及资源,【ai技】
行云流水AI笔记
开源人工智能
根据你提供的CUDA版本(11.5)和NVIDIA驱动错误信息,以下是PyTorch、TensorFlow的兼容版本建议及环境修复方案:1.版本兼容性表框架兼容CUDA版本推荐安装命令(CUDA11.5)PyTorch11.3/11.6pipinstalltorchtorchvisiontorchaudio--extra-index-urlhttps://download.pytorch.org/
- FB-OCC: 3D Occupancy Prediction based on Forward-BackwardView Transformation
justtoomuchforyou
智驾
NVidia,CVPR20233DOccupancyPredictionChallengeworkshoppaper:https://arxiv.org/pdf/2307.1492code:https://github.com/NVlabs/FB-BEV大参数量imagebackboneInternImage-H,1B外部数据集预训练:object365nuscenes:有点云label,强化网络
- 【安装Stable Diffusion以及遇到问题和总结】
岁月玲珑
AIstablediffusionAI编程AI作画
在本地安装部署StableDiffusion,需要准备好硬件环境,安装相关依赖,然后配置模型。下面为你详细介绍安装部署的步骤:一、硬件要求显卡:需要NVIDIAGPU,显存至少6GB,推荐8GB及以上。系统:Windows10/11、Linux(Ubuntu等)或macOS(需要Rosetta2)。内存:至少16GBRAM。存储空间:准备10GB以上的可用空间。二、软件准备首先要安装Python和
- 昇腾AI生态组件全解析:与英伟达生态的深度对比
随着人工智能技术的快速发展,国产AI芯片的崛起正在改变全球计算产业的格局。华为昇腾(Ascend)系列AI处理器凭借自主创新的达芬奇架构,构建了完整的软硬件生态体系。本文将从核心组件对比、显卡性能对标两个维度,深入剖析昇腾与英伟达(NVIDIA)生态的技术差异与适用场景。一、昇腾核心组件与英伟达对标分析1.推理引擎:MindIEvsTensorRT昇腾MindIE1.0.0基于昇腾芯片的深度学习推
- docker: Error response from daemon: could not select device driver ““ with capabilities: [[gpu]].
这个错误表明Docker无法识别或加载支持GPU所需的设备驱动程序。以下是完整的解决方案和根本原因分析,结合最新技术和实践整理:根本原因分析缺少NVIDIAContainerToolkit现代Docker依赖NVIDIAContainerToolkit(前身为nvidia-docker2)实现GPU透传,未安装时无法调用GPU驱动。Docker配置未启用NVIDIA运行时需在daemon.json
- centos 7 安装NVIDIA Container Toolkit
几道之旅
centoslinux运维
要在CentOS7上离线安装NVIDIAContainerToolkit,需确保已安装NVIDIA驱动和Docker环境。以下是完整步骤及注意事项:⚙️一、环境准备验证NVIDIA驱动运行nvidia-smi确认驱动已正确安装,若未安装需先离线安装驱动:下载对应GPU型号的驱动包(如NVIDIA-Linux-x86_64-xxx.run)。禁用系统自带nouveau驱动(修改/etc/modpro
- 编译OpenCV支持CUDA视频解码
AI标书
pythonopenvccudanvidiadockerbuild
如何在Ubuntu上编译OpenCV并启用CUDA视频解码支持(cudacodec)在深度学习、视频处理等高性能计算领域,OpenCV的GPU加速功能非常重要。特别是它的cudacodec模块,能直接利用NVIDIA硬件实现高效的视频解码,极大提升性能。本文将基于Ubuntu环境,详细介绍从环境准备到编译安装OpenCV,并开启cudacodec模块的全过程。完整的shell脚本以及本次编译所用到
- CUDA与venv的配置
老兵发新帖
经验分享
根据技术原理和实际配置经验,CUDA工具包本身无法完全安装在Python的venv虚拟环境目录中,但可通过环境变量和依赖管理实现虚拟环境对特定CUDA版本的调用。以下是关键分析及配置方案:⚙️一、CUDA工具包的安装位置与虚拟环境的关系系统级全局安装CUDA工具包(含nvcc编译器、CUDA运行时库等)必须安装在系统全局路径(如Windows的C:\ProgramFiles\NVIDIAGPUCo
- CUDA编程:优化GPU并行处理与内存管理
Omoo
CUDAGPU并行处理线程协作内存管理硬件限制
背景简介CUDA是NVIDIA推出的一种通用并行计算架构,它利用GPU的强大计算能力来解决复杂的计算问题。在本书的第12章中,我们深入探讨了CUDA编程的关键概念,包括线程间的协作、内存分配与管理以及如何应对硬件限制。CUDA中的线程协作与内存管理在GPU上进行编程时,我们需要处理内存分配、数据传输以及内核(kernel)的调用等任务。CUDA提供了一系列的API来帮助开发者管理这些资源。在提供的
- 2021-02-03
thalch
深度学习
服务器安装nvidia驱动服务器安装nvidia驱动服务器安装nvidia驱动如果之前装过驱动,此时卡在登陆界面或黑屏可以尝试卸载之前装的驱动进入、usr/src版本430.40sudoapt-getremovenvidia-*sudonvidia-uninstallsudoapt-getautoremove//谨慎使用,可能误删别的文件最好不用禁掉nouveausudogedit/etc/mod
- Python学习Day33
m0_64472246
python打卡学习python
学习来源:浙大疏锦行一、PyTorch和CUDA的安装:给电脑装“超级计算器”通俗解释PyTorch:是一个专门用于深度学习的“工具箱”,类似程序员的“智能积木”,能快速搭建神经网络。CUDA:是NVIDIA显卡的“加速引擎”,相当于给电脑的显卡装了一个“超级计算器”,让它能快速计算复杂的数学问题(如图像识别、数据训练)。安装逻辑:先装CUDA(显卡的“计算器驱动”),再装PyTorch(用这个计
- torch-gpu版本 anaconda配置教程
GXYGGYXG
python
教程Pytorch的GPU版本安装,在安装anaconda的前提下安装pytorch_pytorch-gpu-CSDN博客版本对应PyTorch中torch、torchvision、torchaudio、torchtext版本对应关系_torch2.0.1对应的torchvision-CSDN博客cuda下载地址CUDAToolkitArchive|NVIDIADevelopercudacudnn
- F5 携手NVIDIA BlueField-3 DPU加速服务提供商边缘AI发展
资讯分享周
人工智能
F5BIG-IPNext云原生网络功能部署于NVIDIABlueField-3DPU,可提升数据管理与安全性,加速边缘AI创新,引领AI-RAN未来发展世界移动通信大会,巴塞罗那,2025年3月6日-F5(NASDAQ:FFIV)日前宣布将BIG-IPNext云原生网络功能(BIG-IPNextCloud-NativeNetworkFunctions,CNF)部署于NVIDIABlueField-
- CentOS7安装显卡驱动
贲_WM
CentOScentos显卡
服务器安装了CentOS7.6操作系统(带GUI的服务器),安装了RTX6000显卡,以下开始安装显卡驱动,并测试UE4。1、下载驱动从官方驱动|NVIDIA下载驱动程序,此处下载了NVIDIA-Linux-x86_64-515.57.run。2、禁用nouveau检查系统是否存在nouveau驱动:lsmod|grepnouveau如果没有输出则表示禁用成功,进入下一步。如果有输出则表示存在no
- centos8安装显卡驱动
1、查看显卡型号```powershell命令:lspci|grep-ivga输出:01:00.0VGAcompatiblecontroller:NVIDIACorporationGP102[GeForceGTX1080Ti](reva1)2、查看系统内核命令:uname-r输出:3.10.0-862.el7.x86_644、官网下载对应的显卡版本https://www.nvidia.cn/dri
- 本地部署大语言模型
小俊学长
语言模型人工智能自然语言处理
本地部署大语言模型(LLMs)是一个涉及多个步骤和技术细节的过程,包括硬件准备、软件安装、模型下载与配置等。以下是一个详细且全面的指南,旨在帮助读者在本地环境中成功部署大语言模型。一、硬件准备本地部署大语言模型对硬件有一定的要求,主要集中在显卡(GPU)和内存(RAM)上。由于大语言模型通常具有庞大的参数量和计算量,因此需要强大的硬件支持。显卡(GPU):入门级配置:推荐至少使用NVIDIAGeF
- TensorFlow 安装与 GPU 驱动兼容(h800)
weixin_44719529
tensorflowneo4j人工智能
环境说明TensorFlow安装与GPU驱动兼容CUDA/H800特殊注意事项PyCharm和终端环境变量设置方法测试GPU是否可用的Python脚本#使用TensorFlow2.13在NVIDIAH800上启用GPU加速完整指南在使用TensorFlow进行深度学习训练时,充分利用GPU能力至关重要。本文记录了在Linux环境下使用TensorFlow2.13搭配NVIDIAH800GPU的完整
- 非root用户在服务器(linux-Ubuntu16.04)上安装cuda和cudnn,tensorflow-gpu1.13.1
码小花
模型测试环境搭建
1.准备工作(下载CUDA10.0和cudnn安装包)查看tensorflow和CUDA,cudnn的版本的对应关系,从而选择合适的版本进行下载下载CUDA10.0安装包,点击官网进行下载,根据服务器的具体情况选择对应的版本,如下图所示下载完毕后得到安装包cuda_10.0.130_410.48_linux.run下载cudnn,选择CUDA10.0对应的版本(需要注册登录nvidia账号),点击
- 如何安装Tensorflow和GPU配置
神隐灬
tensorflow学习tensorflow人工智能python
课题组某一台服务器升级后,很多环境丢失了,4块3090的GPU的驱动已安装好,但没有公用的Tensorflow可使用。于是自己鼓捣了一番Tensorflow的安装,等管理员安装公用的环境不知道要到猴年马月……服务器是Linux系统(CentOS),GPU是英伟达公司的3090,已经安装好驱动,可以通过命令看到相关信息:$nvidia-smiTueMay2820:54:092024+--------
- BEV-Fusion环境配置(RTX4090)
BEV-Fusion环境配置(RTX4090)SystemVersionSystemVer.Ubuntu22.04.5LTSKernelVer.6.8.0-57-genericGPU:RTX4090CudaVersionin/usr/local/cudanvcc:NVIDIA(R)CudacompilerdriverCopyright(c)2005-2022NVIDIACorporationBui
- DirectX function “GetDeviceRemovedReason“ failed with DXGI_ERROR_DEVICE_HUNG (“The GPU will not resp
Roc-xb
Windows相关问题解决显卡驱动Windows
玩游戏的时候,报错:DirectXfunction“GetDeviceRemovedReason”failedwithDXGI_ERROR_DEVICE_HUNG(“TheGPUwillnotrespondtomorecommands”).GPU:“NVIDIAGeForceRTX4060”,Driver:57652.Thiserrorisusuallycausedbythegraphicsdri
- Ubuntu18.04全命令行在3090显卡上安装pytorch环境
镜中隐
深度学习pytorch深度学习3090全命令行安装ubuntu18.04
1.3090驱动安装:sudoadd-apt-repositoryppa:graphics-drivers/ppasudoaptupdatesudoaptinstallnvidia-driver-470sudoaptautoremovexserver-xorgsudoaptautoremove--purgexserver-xorgsudoapt-markholdnvidia-driver-470#
- 开发电磁-热-力-流耦合的GPU加速算法(基于NVIDIA Modulus)
百态老人
算法
一、技术背景与需求分析电磁-热-力-流多物理场耦合问题广泛存在于芯片散热设计、高功率激光器、航空航天热防护系统等场景。传统仿真方法面临以下挑战:计算复杂度爆炸:四场耦合需联立求解Maxwell方程、Navier-Stokes方程、热传导方程及结构动力学方程,单次仿真耗时可超100小时(基于CPU集群);跨尺度建模困难:纳米级电磁热点与毫米级热流场需不同网格精度,传统有限元法(FEM)难以统一;实时
- RISC-V向量扩展与GPU协处理:开源加速器设计新范式——对比NVDLA与香山架构的指令集融合方案
点击“AladdinEdu,同学们用得起的【H卡】算力平台”,H卡级别算力,按量计费,灵活弹性,顶级配置,学生专属优惠当开源指令集遇上异构计算,RISC-V向量扩展(RVV)正重塑加速器设计范式。本文深入对比两大开源架构——NVIDIANVDLA与中科院香山处理器在指令集融合上的创新路径。01开源加速器生态的范式转移RISC-V向量扩展的核心突破RVV1.0标准带来三大革命性特性:1.**可伸缩向
- Docker使用宿主机GPU驱动:绕开nvidia docker的神奇方法
~LONG~
工具类学习积累docker容器运维
0、前言当我们在一个docker的容器中想要使用GPU时,往往需要从dockerimage构建之初就开始使用nvidiadocker。那么有没有什么方法绕开,直接使用普通的docker,也能让容器访问到宿主机的驱动呢?有的,兄弟,有的,这样的方法我问GPT了还有1种。1、具体场景场景:我是普通的docker运行yolo,需要使用GPU,但是报错:RuntimeError:FoundnoNVIDIA
- Ubuntu20.04 Nvidia Docker 安装
Naijiaaa
Dockerubuntudockerlinux
Ubuntu20.04NvidiaDocker安装首先,确保已经安装Nvidia显卡驱动一.安装docker1.下载安装包(ctrl+Alt+T打开终端)2.更新docker用户组3.测试4.查看docker版本二.安装NvidiaDocker安装三.进入docker四.后台运行docker首先,确保已经安装Nvidia显卡驱动Ubuntu可视化界面:软件和更新-附加驱动-选择合适的驱动(这里选择
- 2020-11-23 安装kaldi提示CUDA版本与实际安装版本不符
CBCU
UbuntuKaldiCUDA语音识别linux深度学习
安装kaldi提示CUDA版本与实际安装版本不符在kaldi的src文件夹下运行./configure--shared提示:***configurefailed:CUDA9_1doesnotsupportg++(g++-7).Youneedg++<7.0.***而我在实际安装的版本是10_1:nvcc:NVIDIA(R)CudacompilerdriverCopyright(c)2005-2019
- 生成本地 微调 +强化学习 qwen3-4b 研究搭建流程步骤
行云流水AI笔记
人工智能
在本地微调并应用强化学习(RL)对Qwen-3-4B模型进行研究和搭建,是一个复杂但可行的过程。以下是一个详细的流程步骤,涵盖从环境准备、数据准备、模型微调到强化学习应用的各个阶段。一、环境准备硬件要求GPU:至少需要多块高性能GPU(如NVIDIAA100或V100),因为Qwen-3-4B模型参数量大,内存需求高。内存:建议至少128GBRAM,以确保数据处理和模型加载的流畅性。存储:高速SS
- 解决docker下的Linux系统调用GPU失败
Alphapeople
docker容器运维
从以下网址下载:https://mirror.cs.uchicago.edu/nvidia-docker/libnvidia-container/stable/#完全移除所有nvidia容器相关包sudoaptpurgelibnvidia-container*nvidia-container*nvidia-docker*#重新安装(确保所有包版本一致)sudodpkg-ilibnvidia-con
- 企业内训|Nvidia智算中心深度技术研修-某智算厂商研发中心
TsingtaoAI
Nvidia智算集群企业内训智算中心gpu算力GPU培训
课程概述此企业内训课程“Nvidia智算中心的深度技术研修”专为某智算厂商研发中心设计,内容涵盖了从基础设施构建到高性能计算优化的全方位技术要点。课程为期七天,分模块详细讲解了NV算力资源的网络架构、存储优化、智算集群的建设与自动化管理、NCCL通信优化及分布式训练进阶等内容,结合大量实际案例,深入探讨各类技术在智算中心中的应用与最佳实践。通过该课程,学员将全面掌握高效构建和管理智算平台的技能,为
- java类加载顺序
3213213333332132
java
package com.demo;
/**
* @Description 类加载顺序
* @author FuJianyong
* 2015-2-6上午11:21:37
*/
public class ClassLoaderSequence {
String s1 = "成员属性";
static String s2 = "
- Hibernate与mybitas的比较
BlueSkator
sqlHibernate框架ibatisorm
第一章 Hibernate与MyBatis
Hibernate 是当前最流行的O/R mapping框架,它出身于sf.net,现在已经成为Jboss的一部分。 Mybatis 是另外一种优秀的O/R mapping框架。目前属于apache的一个子项目。
MyBatis 参考资料官网:http:
- php多维数组排序以及实际工作中的应用
dcj3sjt126com
PHPusortuasort
自定义排序函数返回false或负数意味着第一个参数应该排在第二个参数的前面, 正数或true反之, 0相等usort不保存键名uasort 键名会保存下来uksort 排序是对键名进行的
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8&q
- DOM改变字体大小
周华华
前端
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- c3p0的配置
g21121
c3p0
c3p0是一个开源的JDBC连接池,它实现了数据源和JNDI绑定,支持JDBC3规范和JDBC2的标准扩展。c3p0的下载地址是:http://sourceforge.net/projects/c3p0/这里可以下载到c3p0最新版本。
以在spring中配置dataSource为例:
<!-- spring加载资源文件 -->
<bean name="prope
- Java获取工程路径的几种方法
510888780
java
第一种:
File f = new File(this.getClass().getResource("/").getPath());
System.out.println(f);
结果:
C:\Documents%20and%20Settings\Administrator\workspace\projectName\bin
获取当前类的所在工程路径;
如果不加“
- 在类Unix系统下实现SSH免密码登录服务器
Harry642
免密ssh
1.客户机
(1)执行ssh-keygen -t rsa -C "
[email protected]"生成公钥,xxx为自定义大email地址
(2)执行scp ~/.ssh/id_rsa.pub root@xxxxxxxxx:/tmp将公钥拷贝到服务器上,xxx为服务器地址
(3)执行cat
- Java新手入门的30个基本概念一
aijuans
javajava 入门新手
在我们学习Java的过程中,掌握其中的基本概念对我们的学习无论是J2SE,J2EE,J2ME都是很重要的,J2SE是Java的基础,所以有必要对其中的基本概念做以归纳,以便大家在以后的学习过程中更好的理解java的精髓,在此我总结了30条基本的概念。 Java概述: 目前Java主要应用于中间件的开发(middleware)---处理客户机于服务器之间的通信技术,早期的实践证明,Java不适合
- Memcached for windows 简单介绍
antlove
javaWebwindowscachememcached
1. 安装memcached server
a. 下载memcached-1.2.6-win32-bin.zip
b. 解压缩,dos 窗口切换到 memcached.exe所在目录,运行memcached.exe -d install
c.启动memcached Server,直接在dos窗口键入 net start "memcached Server&quo
- 数据库对象的视图和索引
百合不是茶
索引oeacle数据库视图
视图
视图是从一个表或视图导出的表,也可以是从多个表或视图导出的表。视图是一个虚表,数据库不对视图所对应的数据进行实际存储,只存储视图的定义,对视图的数据进行操作时,只能将字段定义为视图,不能将具体的数据定义为视图
为什么oracle需要视图;
&
- Mockito(一) --入门篇
bijian1013
持续集成mockito单元测试
Mockito是一个针对Java的mocking框架,它与EasyMock和jMock很相似,但是通过在执行后校验什么已经被调用,它消除了对期望 行为(expectations)的需要。其它的mocking库需要你在执行前记录期望行为(expectations),而这导致了丑陋的初始化代码。
&nb
- 精通Oracle10编程SQL(5)SQL函数
bijian1013
oracle数据库plsql
/*
* SQL函数
*/
--数字函数
--ABS(n):返回数字n的绝对值
declare
v_abs number(6,2);
begin
v_abs:=abs(&no);
dbms_output.put_line('绝对值:'||v_abs);
end;
--ACOS(n):返回数字n的反余弦值,输入值的范围是-1~1,输出值的单位为弧度
- 【Log4j一】Log4j总体介绍
bit1129
log4j
Log4j组件:Logger、Appender、Layout
Log4j核心包含三个组件:logger、appender和layout。这三个组件协作提供日志功能:
日志的输出目标
日志的输出格式
日志的输出级别(是否抑制日志的输出)
logger继承特性
A logger is said to be an ancestor of anothe
- Java IO笔记
白糖_
java
public static void main(String[] args) throws IOException {
//输入流
InputStream in = Test.class.getResourceAsStream("/test");
InputStreamReader isr = new InputStreamReader(in);
Bu
- Docker 监控
ronin47
docker监控
目前项目内部署了docker,于是涉及到关于监控的事情,参考一些经典实例以及一些自己的想法,总结一下思路。 1、关于监控的内容 监控宿主机本身
监控宿主机本身还是比较简单的,同其他服务器监控类似,对cpu、network、io、disk等做通用的检查,这里不再细说。
额外的,因为是docker的
- java-顺时针打印图形
bylijinnan
java
一个画图程序 要求打印出:
1.int i=5;
2.1 2 3 4 5
3.16 17 18 19 6
4.15 24 25 20 7
5.14 23 22 21 8
6.13 12 11 10 9
7.
8.int i=6
9.1 2 3 4 5 6
10.20 21 22 23 24 7
11.19
- 关于iReport汉化版强制使用英文的配置方法
Kai_Ge
iReport汉化英文版
对于那些具有强迫症的工程师来说,软件汉化固然好用,但是汉化不完整却极为头疼,本方法针对iReport汉化不完整的情况,强制使用英文版,方法如下:
在 iReport 安装路径下的 etc/ireport.conf 里增加红色部分启动参数,即可变为英文版。
# ${HOME} will be replaced by user home directory accordin
- [并行计算]论宇宙的可计算性
comsci
并行计算
现在我们知道,一个涡旋系统具有并行计算能力.按照自然运动理论,这个系统也同时具有存储能力,同时具备计算和存储能力的系统,在某种条件下一般都会产生意识......
那么,这种概念让我们推论出一个结论
&nb
- 用OpenGL实现无限循环的coverflow
dai_lm
androidcoverflow
网上找了很久,都是用Gallery实现的,效果不是很满意,结果发现这个用OpenGL实现的,稍微修改了一下源码,实现了无限循环功能
源码地址:
https://github.com/jackfengji/glcoverflow
public class CoverFlowOpenGL extends GLSurfaceView implements
GLSurfaceV
- JAVA数据计算的几个解决方案1
datamachine
javaHibernate计算
老大丢过来的软件跑了10天,摸到点门道,正好跟以前攒的私房有关联,整理存档。
-----------------------------华丽的分割线-------------------------------------
数据计算层是指介于数据存储和应用程序之间,负责计算数据存储层的数据,并将计算结果返回应用程序的层次。J
&nbs
- 简单的用户授权系统,利用给user表添加一个字段标识管理员的方式
dcj3sjt126com
yii
怎么创建一个简单的(非 RBAC)用户授权系统
通过查看论坛,我发现这是一个常见的问题,所以我决定写这篇文章。
本文只包括授权系统.假设你已经知道怎么创建身份验证系统(登录)。 数据库
首先在 user 表创建一个新的字段(integer 类型),字段名 'accessLevel',它定义了用户的访问权限 扩展 CWebUser 类
在配置文件(一般为 protecte
- 未选之路
dcj3sjt126com
诗
作者:罗伯特*费罗斯特
黄色的树林里分出两条路,
可惜我不能同时去涉足,
我在那路口久久伫立,
我向着一条路极目望去,
直到它消失在丛林深处.
但我却选了另外一条路,
它荒草萋萋,十分幽寂;
显得更诱人,更美丽,
虽然在这两条小路上,
都很少留下旅人的足迹.
那天清晨落叶满地,
两条路都未见脚印痕迹.
呵,留下一条路等改日再
- Java处理15位身份证变18位
蕃薯耀
18位身份证变15位15位身份证变18位身份证转换
15位身份证变18位,18位身份证变15位
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 201
- SpringMVC4零配置--应用上下文配置【AppConfig】
hanqunfeng
springmvc4
从spring3.0开始,Spring将JavaConfig整合到核心模块,普通的POJO只需要标注@Configuration注解,就可以成为spring配置类,并通过在方法上标注@Bean注解的方式注入bean。
Xml配置和Java类配置对比如下:
applicationContext-AppConfig.xml
<!-- 激活自动代理功能 参看:
- Android中webview跟JAVASCRIPT中的交互
jackyrong
JavaScripthtmlandroid脚本
在android的应用程序中,可以直接调用webview中的javascript代码,而webview中的javascript代码,也可以去调用ANDROID应用程序(也就是JAVA部分的代码).下面举例说明之:
1 JAVASCRIPT脚本调用android程序
要在webview中,调用addJavascriptInterface(OBJ,int
- 8个最佳Web开发资源推荐
lampcy
编程Web程序员
Web开发对程序员来说是一项较为复杂的工作,程序员需要快速地满足用户需求。如今很多的在线资源可以给程序员提供帮助,比如指导手册、在线课程和一些参考资料,而且这些资源基本都是免费和适合初学者的。无论你是需要选择一门新的编程语言,或是了解最新的标准,还是需要从其他地方找到一些灵感,我们这里为你整理了一些很好的Web开发资源,帮助你更成功地进行Web开发。
这里列出10个最佳Web开发资源,它们都是受
- 架构师之面试------jdk的hashMap实现
nannan408
HashMap
1.前言。
如题。
2.详述。
(1)hashMap算法就是数组链表。数组存放的元素是键值对。jdk通过移位算法(其实也就是简单的加乘算法),如下代码来生成数组下标(生成后indexFor一下就成下标了)。
static int hash(int h)
{
h ^= (h >>> 20) ^ (h >>>
- html禁止清除input文本输入缓存
Rainbow702
html缓存input输入框change
多数浏览器默认会缓存input的值,只有使用ctl+F5强制刷新的才可以清除缓存记录。
如果不想让浏览器缓存input的值,有2种方法:
方法一: 在不想使用缓存的input中添加 autocomplete="off";
<input type="text" autocomplete="off" n
- POJO和JavaBean的区别和联系
tjmljw
POJOjava beans
POJO 和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Pure Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比 POJO复杂很多, Java Bean 是可复用的组件,对 Java Bean 并没有严格的规
- java中单例的五种写法
liuxiaoling
java单例
/**
* 单例模式的五种写法:
* 1、懒汉
* 2、恶汉
* 3、静态内部类
* 4、枚举
* 5、双重校验锁
*/
/**
* 五、 双重校验锁,在当前的内存模型中无效
*/
class LockSingleton
{
private volatile static LockSingleton singleton;
pri