第一章 python-opencv-图片导入和显示
第二章 python-opencv图像简单处理
第三章 python-opencv图像mask掩膜处理
第四章 python-opencv图像马赛克
第五章 python-opencv人脸马赛克
第六章 python-opencv人脸检测
第七章 python-opencv图像张贴
第八章 python-opencv轮廓绘制
`
本章主要说明如何使用python-opencv题图图片中图案的边缘。
import cv2
if __name__ == '__main__':
# 加载图片
img = cv2.imread('./tong.jpg')
# 将图片转化为灰度图像
gray = cv2.cvtColor(img, code = cv2.COLOR_BGR2GRAY)
# 将灰度图像进行高斯模糊
gray1 = cv2.GaussianBlur(gray, (5,5),0) #高斯模糊
# 进行轮廓的检测
canny = cv2.Canny(gray1, 100, 200)
cv2.imshow('dog', canny)
cv2.waitKey(0)
cv2.destroyAllWindows()
在进行轮廓检测前进行高斯模糊处理是为了去除噪声。
opencv中的高斯模糊函数定义如下:
GaussianBlur(src, ksize, sigmaX, dst=None, sigmaY=None, borderType=None)
各参数解释:
该函数将源图像与指定的高斯核进行卷积。
. src 输入图像; 图像可以有任意数量的通道,这些通道被处理
. dst 输出与 src 大小和类型相同的图像。
. ksize 高斯内核大小。 ksize.width 和 ksize.height 可以不同,但它们都必须是正数和奇数。 或者,它们可以是零,然后根据 sigma 计算它们。
. sigmaX X 方向的高斯核标准差。
. sigmaY Y 方向的高斯核标准差; 如果 sigmaY 为零,则设置为等于 sigmaX,如果两个 sigma 均为零,则根据 ksize.width 和 ksize.height 计算,
. borderType 像素外推法
本文中的使用方法:
gray1 = cv2.GaussianBlur(gray, (5,5),0)
将灰度图像gray使用5x5的高斯核进行处理,高斯核尺寸越大去噪效果越好,但是图像会越模糊,X 方向的高斯核标准差设置为0。
高斯模糊效果如下,左侧为原始图片,右侧为高斯模糊处理后的图片:
轮廓建材使用canny函数,定义如下:
Canny(image, threshold1, threshold2, edges=None, apertureSize=None, L2gradient=None)
各参数解释:
Canny(图像,threshold1,threshold2[,edges[,apertureSize[,L2gradient]]])->边缘
.
.该函数在输入图像中查找边缘,并使用 Canny 算法在输出地图边缘中标记它们。 threshold1 和 threshold2 之间的最小值用于边缘链接。最大值用于查找强边缘的初始段。
. image 8 位输入图像。
. edges 输出边缘图;单通道 8 位图像,其大小与 image 相同。
. threshold1 滞后过程的第一个阈值。
. threshold2 滞后过程的第二个阈值。
. apertureSize Sobel 算子的孔径大小。
在本文的使用方法:
canny = cv2.Canny(gray1, 100, 200)