- 3DUnet实现3D医学影像的有效分割
Andrew_Xzw
python深度学习githubopencv计算机视觉分割
最近涉及到了3D医学影像的分割,网络上相关的实现比较少,因此进行实现记录。3DUnet实现3D医学影像的有效分割1.配置代码环境2.配置数据集以及模型文件3.训练4.预测1.配置代码环境这里介绍一个很好的开源项目,git为:https://github.com/ellisdg/3DUnetCNN.git。安装环境为:nibabel>=4.0.1numpy>=1.23.0#torch>=1.12.0
- ubuntu 22 安装vmware 17.5
bohu83
ubuntulinuxvmwarevmmonvmnet
因为玩小车,亚博售后说目前技术不支持搭建移植环境,推荐使用官方的虚拟机镜像。ubuntu安装linux,下载,推荐CDSRepository-/var/www/public/stage/session-120/cds/vmw-desktop/ws/17.5.1/23298084/linux/core官方网站brandcom注册很麻烦,貌似有bug,我注册完还提示登录失败。准备工作sudoaptin
- PyTorch机器学习与深度学习技术方法
Teacher.chenchong
机器学习python开发语言
近年来,随着AlphaGo、无人驾驶汽车、医学影像智慧辅助诊疗、ImageNet竞赛等热点事件的发生,人工智能迎来了新一轮的发展浪潮。尤其是深度学习技术,在许多行业都取得了颠覆性的成果。另外,近年来,Pytorch深度学习框架受到越来越多科研人员的关注和喜爱。Python基础知识串讲1、Python环境搭建(Python软件下载、安装与版本选择;PyCharm下载、安装;Python之HelloW
- 基于生成式人工智能的网联自动驾驶:通感融合决策技术
罗伯特之技术屋
行业信息处理技术与政策研究专栏人工智能自动驾驶机器学习
【摘要】探讨了生成式人工智能在网联自动驾驶技术中的潜在价值。现有研究主要侧重于传统感知决策和车联网技术,但却忽视了生成式人工智能在推动自动驾驶方面的重要作用。首先讨论了生成式人工智能技术如何提高自动驾驶决策、训练、感知和导航等模块的性能,接着探讨了其在融合了语义通信、通感一体和新型空口技术的下一代车联网中的角色,然后提出了基于人工智能代理的网联自动驾驶模型,最后强调生成式人工智能是实现车辆高级别自
- 深度学习模块C2f代码详解
你是狒狒吗
目标检测人工智能计算机视觉pytorchYOLO神经网络
C2f是一个用于构建卷积神经网络(CNN)的模块,特别是在YOLOv5和YOLOv8等目标检测模型中。这个模块是一个改进的CSP(CrossStagePartial)Bottleneck结构,旨在提高计算效率和特征提取能力。下面是对C2f类的详细解释:类定义和初始化Python复制classC2f(nn.Module):“”“FasterImplementationofCSPBottleneckw
- 使用工具深度优化Docker镜像
ivwdcwso
运维docker容器云原生
1.引言Docker镜像优化是容器化应用开发中的关键环节。一个优化良好的镜像不仅可以减少存储和传输成本,还能提升应用的启动速度和安全性。然而,优化镜像的同时,必须确保镜像的功能不受影响。本文将从专业研究员的角度,详细介绍如何使用工具深度优化Docker镜像,并确保优化后的镜像能够正常运行。2.Docker镜像优化的核心目标减小镜像体积:减少存储和传输成本。提升构建效率:通过缓存和并行构建减少构建时
- 华为 Ascend 平台 YOLOv5 目标检测推理教程
Lunar*
目标检测华为YOLO目标检测
1.背景介绍随着人工智能技术的快速发展,目标检测在智能安防、自动驾驶、工业检测等领域中扮演了重要角色。YOLOv5是一种高效的目标检测模型,凭借其速度和精度的平衡广受欢迎。华为Ascend推理框架(ACL)是AscendCANN软件栈的核心组件,专为AscendAI加速硬件(如Atlas300I)设计,可实现高性能的深度学习推理。在本文中,我们将介绍如何基于华为AscendACL推理框架对YOLO
- 机器学习和深度学习的概念
你好呀我是裤裤
深度学习笔记机器学习深度学习人工智能
MachineLearning机器学习,可以看作是找一个函数。这个函数是人类找不到的,所以交给机器来找。DifferenttypesofFunctions**Regression:**函数的输出是一个数值forexample:**Classification:**给出选项,让机器去选择。forexample:检测一个邮件是不是垃圾文件,就可以通过这个来做。选项是两个:垃圾文件or非垃圾文件。下面,
- 浅谈滤波中Q和R的调整——KF第三篇笔记
MATLAB卡尔曼
卡尔曼专题免费专栏开发语言kalman卡尔曼滤波算法
前段时间收到私信和email,问我关于Q和R怎么取、如何调。前面说过p0和x0怎么找的问题,Q和R怎么找还没有说过,这里就简单探讨一下。Q和R的意义Q值为过程噪声,越小系统越容易收敛,表示对模型预测的值信任度越高;但是太小则容易发散,如果Q为零,那么我们只相信预测值;Q值越大表示对于预测的信任度就越低,而对测量值的信任度就变高;如果Q值无穷大,那么则表示信任测量值。R值为测量噪声。R太大,滤波的响
- Pytorch实现:LSTM-火灾温度预测
骑猪玩狗
pytorchlstm人工智能
本文为365天深度学习训练营中的学习记录博客原作者:K同学啊前期工作语言环境:Python3.9.18编译器:JupyterLab深度学习环境:Pytorch1.12.11.设置GPUimporttorchimporttorch.nnasnnimporttorchvisionfromtorchvisionimporttransforms,datasetsimportos,PIL,pathlibde
- 深度学习项目--基于LSTM的火灾预测研究(pytorch实现)
羊小猪~~
RNNLSTM神经网络案例机器学习/数据分析案例深度学习lstmpytorch人工智能机器学习rnngru
本文为365天深度学习训练营中的学习记录博客原作者:K同学啊前言LSTM模型一直是一个很经典的模型,这个模型当然也很复杂,一般需要先学习RNN、GRU模型之后再学,GRU、LSTM的模型讲解将在这两天发布更新,其中:深度学习基础–一文搞懂RNN深度学习基础–GRU学习笔记(李沐《动手学习深度学习》)这一篇:是基于LSTM模型火灾预测研究,讲述了如何构建时间数据、模型如何构建、pytorch中LST
- 自动驾驶中的混合决策架构
AI天才研究院
ChatGPTAI大模型企业级应用开发实战大数据AI人工智能大厂Offer收割机面试题简历程序员读书硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
自动驾驶中的混合决策架构关键词:自动驾驶、混合决策架构、决策模型、算法、数学模型、项目实战摘要:本文将深入探讨自动驾驶中的混合决策架构,从基础理论到实际应用,全面解析这一领域的核心概念、算法原理及其在自动驾驶中的具体应用。通过详细的项目实战案例,本文旨在为读者提供全面的技术指导和深刻的思考。第一部分:自动驾驶基础理论第1章:自动驾驶概述自动驾驶技术的发展背景源于人类对便捷、安全和高效的交通出行的需
- 大模型开发的5种应用架构
我爱学大模型
大数据人工智能自然语言处理大模型机器人大模型开发ai大模型计算机技术
架构对一个项目来说至关重要,它们能帮助构建高效、可维护的系统。然而,当我们进入大模型应用领域时,传统的设计模式似乎不再完全适用。生成式AI等新兴技术的出现,使得我们在设计这些系统时面临前所未有的挑战。在大模型应用实现过程中存在许多独特的问题,例如高昂的成本、较长的响应延迟以及生成内容的不确定性。这些问题要求我们在设计时采用新的方法和策略,以确保系统的稳定性和效率。为了解决这些问题,总结了一些针对大
- 美国最高法院维持TikTok不卖就禁法案;荣耀 CEO 赵明辞职;OpenAI计划几周内推出o3 mini推理模型 | 极客头条
极客日报
tiktokopenai
「极客头条」——技术人员的新闻圈!CSDN的读者朋友们好,「极客头条」来啦,快来看今天都有哪些值得我们技术人关注的重要新闻吧。整理|苏宓出品|CSDN(ID:CSDNnews)一分钟速览新闻点!荣耀CEO赵明辞职,前为华为监事李健继任阿里巴巴内部调整:天猫精灵硬件团队与夸克融合,瞄准AI眼镜市场小米NAS已进入到开发的尾声传特斯拉上海工厂春节期间将停产,内部人员:没听说此事游戏科学在杭州成立黑神话
- 数据仓库复用性:业务需求复用性设计
PersistDZ
大数据与AI数据仓库
数据仓库的业务需求复用性设计是提升数据架构灵活性和扩展性的关键部分。以下是几个关键点,可以帮助实现业务需求复用性的设计:1.通用报表的复用标准化数据模型:设计通用的数据模型,例如通用的事实表和维度表,使得报表可以通过这些模型灵活生成,而不需要为每个报表单独设计数据结构。通过定义通用的维度,如时间维度、客户维度等,可以在不同业务场景下复用。报表模板化:将常见的报表需求抽象为模板,例如销售报表、财务报
- PLUTO:突破基于模仿学习的自动驾驶规划极限
硅谷秋水
机器学习自动驾驶人工智能自动驾驶人工智能机器学习计算机视觉
24年4月来自香港科技大学的论文“PLUTO:PushingtheLimitofImitationLearning-basedPlanningforAutonomousDriving”。PLUTO,突破基于模仿学习的自动驾驶规划极限。改进来自三个关键方面:一种纵向横向感知模型架构,可实现灵活多样的驾驶行为;一种创新的辅助损失计算方法,可广泛应用且可高效地进行批量计算;一种利用对比学习的训练框架,采
- LargeAD:用于自动驾驶的大规模跨传感器数据预训练
硅谷秋水
自动驾驶计算机视觉机器学习自动驾驶人工智能机器学习计算机视觉
25年1月来自新加坡国立大学、南京航空航天、德国Bremerhaven技术大学、上海AI实验室、香港科技大学和香港大学的论文“LargeAD:Large-ScaleCross-SensorDataPretrainingforAutonomousDriving”。视觉基础模型(VFM)的最新进展彻底改变2D视觉感知,但它们在3D场景理解方面的潜力,特别是在自动驾驶应用中的潜力仍未得到充分探索。Lar
- SSM框架从入门到精通
布朗克168
#SSMJava开发相关后端框架经验分享springmybatisjava
文章目录一、SSM框架概述二、Spring基础(一)配置与依赖注入(二)Bean的生命周期(三)事务管理三、SpringMVC入门(一)控制器实现(二)请求映射(三)模型数据绑定四、MyBatis学习(一)SQL映射文件(二)动态SQL(三)实体类与数据映射五、整合SSM(一)基础集成(二)异常处理六、实战应用(一)项目构建(二)调试与优化(三)常见问题解决七、总结一、SSM框架概述SSM框架是由
- Python globals 函数 - Python零基础入门教程
苹果酱0567
面试题汇总与解析课程设计springbootlayui毕业设计java
目录一.Pythonglobals函数语法二.Pythonglobals函数使用三.猜你喜欢零基础Python学习路线推荐:Python学习目录>>Python基础入门在前面我们讲解了Python内置函数locals,内置函数locals直接以字典的形式返回当前位置的所有局部变量,今天需要介绍的是另外一个Python内置函数globals,该函数直接以字典dict的形式返回当前位置的所有全局变量;
- 【WRF理论第九期】输出文件:wrfout 和 wrfrst
WW、forever
WRF模型原理及应用WRF
【WRF理论第九期】输出文件:wrfout和wrfrst1.wrfout文件wrfout文件读取(Python)2.wrfrst文件参考在WRF(WeatherResearchandForecasting)模型中,wrfout和wrfrst是两种重要的输出文件,分别代表不同类型的模拟结果和功能。1.wrfout文件wrfout文件是WRF模拟的主要输出文件,包含了模型在指定时间步长下的所有模拟结果
- 鸿蒙开发进阶(由南向北)
Android小码家
鸿蒙harmonyos华为
文章目录PurpleOH官方示例投屏工具推荐需要HDMI诱骗器智能插件问答社区应用层开发文档开源应用集合第三方仓库竖屏显示源码快速修改验证竖屏效果第一个页面设备端开发文档官方投屏PurplePiOH使用手册固件烧写固件下载源码编译源码导入VSCode指令集repo使用总存储空间使用率搭建编译容器运行编译容器开始编译编译成功查看固件烧录window访问共享路径固件路径复制固件到RKDevtool打开
- 算法面试准备 - 手撕系列第一期 - Softmax
小菜鸟博士
算法面试准备-手撕系列算法人工智能面试
算法面试准备-手撕系列第一期-Softmax目录算法面试准备-手撕系列第一期-SoftmaxSoftmax原理图Softmax实现代码-复杂版和简单版本(推荐简单版本)参考Softmax原理图Softmax原理图Softmax实现代码-复杂版和简单版本(推荐简单版本)方法一:循环计算importtorchdefsoftmax(X):#X为Tensor向量,大小为(batch_size,len)#方
- 每天五分钟深度学习框架pytorch:基于vgg块搭建VGG卷积神经网络
每天五分钟玩转人工智能
深度学习框架pytorch深度学习pytorchcnnVGG卷积神经网络
本文重点前面我们使用pytorch搭建了vgg块,本文我们使用vgg块搭建卷积神经网络VGG16,我们先来看一下vgg16的模型结构是什么样的:搭建vgg16importtorchfromtorchimportnndefvgg_block(num_convs,in_channels,out_channels):net=[nn.Conv2d(in_channels,out_channels,kern
- Vue中常见设计模式的应用~
Warm
vue.js设计模式前端
Vue是基于什么模式?表示既然是Vue中常见的设计模式,首当其冲就先聊聊MVVM模式啦一、mvvm模式Vue.js是一个基于MVVM设计模式的前端框架。它将前端中的UI视图与底层数据和业务逻辑分离开来,使得UI视图与数据和业务逻辑之间不存在耦合性,可以独立编写和测试。MVVM三个组成部分Model(模型):存放业务数据和对数据的操作等View(视图):用户界面,负责呈现UI,并向ViewModel
- 深度学习 Pytorch 张量(Tensor)的创建和常用方法
白白糖
深度学习pytorchpython深度学习pytorch人工智能
1张量的基本创建及其类型和Numpy中的array一样,张量的本质也是结构化地组织了大量的数据。并且在实际操作中,张量的创建和基本功能也与其非常类似。1.1张量(Tensor)函数创建方法张量的最基本创建方法和Numpy中创建Array的格式一致。#Numpy创建数组importnumpyasnp#导入numpya=np.array([1,2,3])importtorch#首次使用,导入torch
- PyTorch 神经协同过滤 (NCF) 推荐系统教程
陌北v1
pytorchpythonNCF神经协同过滤
目录教程概述1.神经协同过滤模型概述NCF模型的主要组成部分:2.数据加载与预处理3.定义神经协同过滤模型4.训练模型5.模型评估6.推荐物品7.完整示例8.总结在本教程中,我们将使用PyTorch实现一个神经协同过滤(NeuralCollaborativeFiltering,简称NCF)推荐系统。神经协同过滤是一种基于深度学习的推荐系统模型,通过学习用户和物品的嵌入表示来预测用户对物品的评分,进
- 树的遍历方式有哪些?
silver687
算法
树的遍历方式主要有以下几种:一、深度优先遍历(一)前序遍历(Pre-orderTraversal)1.定义•访问根节点,然后遍历左子树,最后遍历右子树。在遍历左、右子树时,仍然按照前序遍历的方式进行。2.实现过程(以二叉树为例)•首先访问根节点。例如,对于一棵二叉树,根节点为A,那么先输出A的值。•然后递归地对左子树进行前序遍历。如果左子树的根节点为B,那么继续先访问B,再递归地遍历B的左子树和右
- 【大模型LoRa微调】Qwen2.5 Coder 指令微调【代码已开源】
FF-Studio
大语言模型开源
本文需要用到的代码已经放在GitHub的仓库啦,别忘了给仓库点个小心心~~~https://github.com/LFF8888/FF-Studio-Resources第001个文件哦~一、引言:大语言模型与指令微调1.1大语言模型发展简史随着深度学习的飞速发展,特别是Transformer架构在自然语言处理(NLP)领域的成功,大语言模型(LLM,LargeLanguageModel)成为近年来
- 【PDF转Word】 PDF在线转word文档 好用!优质网站资源推荐
hello_simon
pdfwordPDF转word自媒体性能优化用户运营新媒体运营
大家在工作与学习中,经常需要将PDF文件转换为Word格式以便进行编辑和修改。很多人都不知道怎么操作,今天我们介绍一个非常好用的工具:小白工具网,可以在线帮忙大家快速把PDF转换成word格式。小白工具网提供的PDF转Word功能,正是解决这一需求的得力助手。它支持在线将PDF快速还原为docx、doc格式,不仅转换速度快,而且能够保留原始文件的排版,让转换后的Word文档依然保持清晰易读的特性。
- WeChatFerry 开源项目教程
翁良珏Elena
WeChatFerry开源项目教程项目地址:https://gitcode.com/gh_mirrors/we/WeChatFerry项目介绍WeChatFerry是一个强大的微信自动化工具,旨在帮助用户更高效地管理微信生活。该项目支持多种编程语言的客户端,包括Python、Go、Java等,并且可以接入多种大模型,如Gemini、ChatGPT等。WeChatFerry提供了丰富的功能,包括消息
- html页面js获取参数值
0624chenhong
html
1.js获取参数值js
function GetQueryString(name)
{
var reg = new RegExp("(^|&)"+ name +"=([^&]*)(&|$)");
var r = windo
- MongoDB 在多线程高并发下的问题
BigCat2013
mongodbDB高并发重复数据
最近项目用到 MongoDB , 主要是一些读取数据及改状态位的操作. 因为是结合了最近流行的 Storm进行大数据的分析处理,并将分析结果插入Vertica数据库,所以在多线程高并发的情境下, 会发现 Vertica 数据库中有部分重复的数据. 这到底是什么原因导致的呢?笔者开始也是一筹莫 展,重复去看 MongoDB 的 API , 终于有了新发现 :
com.mongodb.DB 这个类有
- c++ 用类模版实现链表(c++语言程序设计第四版示例代码)
CrazyMizzz
数据结构C++
#include<iostream>
#include<cassert>
using namespace std;
template<class T>
class Node
{
private:
Node<T> * next;
public:
T data;
- 最近情况
麦田的设计者
感慨考试生活
在五月黄梅天的岁月里,一年两次的软考又要开始了。到目前为止,我已经考了多达三次的软考,最后的结果就是通过了初级考试(程序员)。人啊,就是不满足,考了初级就希望考中级,于是,这学期我就报考了中级,明天就要考试。感觉机会不大,期待奇迹发生吧。这个学期忙于练车,写项目,反正最后是一团糟。后天还要考试科目二。这个星期真的是很艰难的一周,希望能快点度过。
- linux系统中用pkill踢出在线登录用户
被触发
linux
由于linux服务器允许多用户登录,公司很多人知道密码,工作造成一定的障碍所以需要有时踢出指定的用户
1/#who 查出当前有那些终端登录(用 w 命令更详细)
# who
root pts/0 2010-10-28 09:36 (192
- 仿QQ聊天第二版
肆无忌惮_
qq
在第一版之上的改进内容:
第一版链接:
http://479001499.iteye.com/admin/blogs/2100893
用map存起来号码对应的聊天窗口对象,解决私聊的时候所有消息发到一个窗口的问题.
增加ViewInfo类,这个是信息预览的窗口,如果是自己的信息,则可以进行编辑.
信息修改后上传至服务器再告诉所有用户,自己的窗口
- java读取配置文件
知了ing
1,java读取.properties配置文件
InputStream in;
try {
in = test.class.getClassLoader().getResourceAsStream("config/ipnetOracle.properties");//配置文件的路径
Properties p = new Properties()
- __attribute__ 你知多少?
矮蛋蛋
C++gcc
原文地址:
http://www.cnblogs.com/astwish/p/3460618.html
GNU C 的一大特色就是__attribute__ 机制。__attribute__ 可以设置函数属性(Function Attribute )、变量属性(Variable Attribute )和类型属性(Type Attribute )。
__attribute__ 书写特征是:
- jsoup使用笔记
alleni123
java爬虫JSoup
<dependency>
<groupId>org.jsoup</groupId>
<artifactId>jsoup</artifactId>
<version>1.7.3</version>
</dependency>
2014/08/28
今天遇到这种形式,
- JAVA中的集合 Collectio 和Map的简单使用及方法
百合不是茶
listmapset
List ,set ,map的使用方法和区别
java容器类类库的用途是保存对象,并将其分为两个概念:
Collection集合:一个独立的序列,这些序列都服从一条或多条规则;List必须按顺序保存元素 ,set不能重复元素;Queue按照排队规则来确定对象产生的顺序(通常与他们被插入的
- 杀LINUX的JOB进程
bijian1013
linuxunix
今天发现数据库一个JOB一直在执行,都执行了好几个小时还在执行,所以想办法给删除掉
系统环境:
ORACLE 10G
Linux操作系统
操作步骤如下:
第一步.查询出来那个job在运行,找个对应的SID字段
select * from dba_jobs_running--找到job对应的sid
&n
- Spring AOP详解
bijian1013
javaspringAOP
最近项目中遇到了以下几点需求,仔细思考之后,觉得采用AOP来解决。一方面是为了以更加灵活的方式来解决问题,另一方面是借此机会深入学习Spring AOP相关的内容。例如,以下需求不用AOP肯定也能解决,至于是否牵强附会,仁者见仁智者见智。
1.对部分函数的调用进行日志记录,用于观察特定问题在运行过程中的函数调用
- [Gson六]Gson类型适配器(TypeAdapter)
bit1129
Adapter
TypeAdapter的使用动机
Gson在序列化和反序列化时,默认情况下,是按照POJO类的字段属性名和JSON串键进行一一映射匹配,然后把JSON串的键对应的值转换成POJO相同字段对应的值,反之亦然,在这个过程中有一个JSON串Key对应的Value和对象之间如何转换(序列化/反序列化)的问题。
以Date为例,在序列化和反序列化时,Gson默认使用java.
- 【spark八十七】给定Driver Program, 如何判断哪些代码在Driver运行,哪些代码在Worker上执行
bit1129
driver
Driver Program是用户编写的提交给Spark集群执行的application,它包含两部分
作为驱动: Driver与Master、Worker协作完成application进程的启动、DAG划分、计算任务封装、计算任务分发到各个计算节点(Worker)、计算资源的分配等。
计算逻辑本身,当计算任务在Worker执行时,执行计算逻辑完成application的计算任务
- nginx 经验总结
ronin47
nginx 总结
深感nginx的强大,只学了皮毛,把学下的记录。
获取Header 信息,一般是以$http_XX(XX是小写)
获取body,通过接口,再展开,根据K取V
获取uri,以$arg_XX
&n
- 轩辕互动-1.求三个整数中第二大的数2.整型数组的平衡点
bylijinnan
数组
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
public class ExoWeb {
public static void main(String[] args) {
ExoWeb ew=new ExoWeb();
System.out.pri
- Netty源码学习-Java-NIO-Reactor
bylijinnan
java多线程netty
Netty里面采用了NIO-based Reactor Pattern
了解这个模式对学习Netty非常有帮助
参考以下两篇文章:
http://jeewanthad.blogspot.com/2013/02/reactor-pattern-explained-part-1.html
http://gee.cs.oswego.edu/dl/cpjslides/nio.pdf
- AOP通俗理解
cngolon
springAOP
1.我所知道的aop 初看aop,上来就是一大堆术语,而且还有个拉风的名字,面向切面编程,都说是OOP的一种有益补充等等。一下子让你不知所措,心想着:怪不得很多人都和 我说aop多难多难。当我看进去以后,我才发现:它就是一些java基础上的朴实无华的应用,包括ioc,包括许许多多这样的名词,都是万变不离其宗而 已。 2.为什么用aop&nb
- cursor variable 实例
ctrain
variable
create or replace procedure proc_test01
as
type emp_row is record(
empno emp.empno%type,
ename emp.ename%type,
job emp.job%type,
mgr emp.mgr%type,
hiberdate emp.hiredate%type,
sal emp.sal%t
- shell报bash: service: command not found解决方法
daizj
linuxshellservicejps
今天在执行一个脚本时,本来是想在脚本中启动hdfs和hive等程序,可以在执行到service hive-server start等启动服务的命令时会报错,最终解决方法记录一下:
脚本报错如下:
./olap_quick_intall.sh: line 57: service: command not found
./olap_quick_intall.sh: line 59
- 40个迹象表明你还是PHP菜鸟
dcj3sjt126com
设计模式PHP正则表达式oop
你是PHP菜鸟,如果你:1. 不会利用如phpDoc 这样的工具来恰当地注释你的代码2. 对优秀的集成开发环境如Zend Studio 或Eclipse PDT 视而不见3. 从未用过任何形式的版本控制系统,如Subclipse4. 不采用某种编码与命名标准 ,以及通用约定,不能在项目开发周期里贯彻落实5. 不使用统一开发方式6. 不转换(或)也不验证某些输入或SQL查询串(译注:参考PHP相关函
- Android逐帧动画的实现
dcj3sjt126com
android
一、代码实现:
private ImageView iv;
private AnimationDrawable ad;
@Override
protected void onCreate(Bundle savedInstanceState)
{
super.onCreate(savedInstanceState);
setContentView(R.layout
- java远程调用linux的命令或者脚本
eksliang
linuxganymed-ssh2
转载请出自出处:
http://eksliang.iteye.com/blog/2105862
Java通过SSH2协议执行远程Shell脚本(ganymed-ssh2-build210.jar)
使用步骤如下:
1.导包
官网下载:
http://www.ganymed.ethz.ch/ssh2/
ma
- adb端口被占用问题
gqdy365
adb
最近重新安装的电脑,配置了新环境,老是出现:
adb server is out of date. killing...
ADB server didn't ACK
* failed to start daemon *
百度了一下,说是端口被占用,我开个eclipse,然后打开cmd,就提示这个,很烦人。
一个比较彻底的解决办法就是修改
- ASP.NET使用FileUpload上传文件
hvt
.netC#hovertreeasp.netwebform
前台代码:
<asp:FileUpload ID="fuKeleyi" runat="server" />
<asp:Button ID="BtnUp" runat="server" onclick="BtnUp_Click" Text="上 传" />
- 代码之谜(四)- 浮点数(从惊讶到思考)
justjavac
浮点数精度代码之谜IEEE
在『代码之谜』系列的前几篇文章中,很多次出现了浮点数。 浮点数在很多编程语言中被称为简单数据类型,其实,浮点数比起那些复杂数据类型(比如字符串)来说, 一点都不简单。
单单是说明 IEEE浮点数 就可以写一本书了,我将用几篇博文来简单的说说我所理解的浮点数,算是抛砖引玉吧。 一次面试
记得多年前我招聘 Java 程序员时的一次关于浮点数、二分法、编码的面试, 多年以后,他已经称为了一名很出色的
- 数据结构随记_1
lx.asymmetric
数据结构笔记
第一章
1.数据结构包括数据的
逻辑结构、数据的物理/存储结构和数据的逻辑关系这三个方面的内容。 2.数据的存储结构可用四种基本的存储方法表示,它们分别是
顺序存储、链式存储 、索引存储 和 散列存储。 3.数据运算最常用的有五种,分别是
查找/检索、排序、插入、删除、修改。 4.算法主要有以下五个特性:
输入、输出、可行性、确定性和有穷性。 5.算法分析的
- linux的会话和进程组
网络接口
linux
会话: 一个或多个进程组。起于用户登录,终止于用户退出。此期间所有进程都属于这个会话期。会话首进程:调用setsid创建会话的进程1.规定组长进程不能调用setsid,因为调用setsid后,调用进程会成为新的进程组的组长进程.如何保证? 先调用fork,然后终止父进程,此时由于子进程的进程组ID为父进程的进程组ID,而子进程的ID是重新分配的,所以保证子进程不会是进程组长,从而子进程可以调用se
- 二维数组 元素的连续求解
1140566087
二维数组ACM
import java.util.HashMap;
public class Title {
public static void main(String[] args){
f();
}
// 二位数组的应用
//12、二维数组中,哪一行或哪一列的连续存放的0的个数最多,是几个0。注意,是“连续”。
public static void f(){
- 也谈什么时候Java比C++快
windshome
javaC++
刚打开iteye就看到这个标题“Java什么时候比C++快”,觉得很好笑。
你要比,就比同等水平的基础上的相比,笨蛋写得C代码和C++代码,去和高手写的Java代码比效率,有什么意义呢?
我是写密码算法的,深刻知道算法C和C++实现和Java实现之间的效率差,甚至也比对过C代码和汇编代码的效率差,计算机是个死的东西,再怎么优化,Java也就是和C