# -*- coding: utf-8 -*-
# /usr/bin/python
# 作者:kimicr
# 实验日期:20190322
# Python版本:3.6.3
# 给定有向图一起点S与顶点V,判断S与V之间是否存在路径,若有,找出最短的路径
# 分析:用广度优先搜索S到各个点的路径,再用深度优先搜索找到最短路径
from collections import deque
class optimal_path(object):
def __init__(self,Graph):
self.Graph = Graph
self.edgeTo = {}
self.depth = 0
self.mark = []
for i in range(len(self.Graph)):
self.mark.append(0)
self.path = self.mark[:]
def dfs(self,start,end):
if start == end:
self.path[self.depth] = int(start)
return True
if self.visited[str(start)] == 1:
return False
else:
self.visited[str(start)] = 1
self.path[self.depth] = int(start)
self.depth += 1
for i in self.new_edgeTo[str(start)]:
if self.dfs(i,end) == True :
return True
self.depth -= 1
return False
def bfs(self, start, end): # 寻找起点为start的路径,并得到相应字典edgeTo
self.visited = {}
d = deque()
d.append(int(start))
self.new_edgeTo = {}
self.mark[int(start)] = 1 #先把起点存入队列并标记
while d:
person = d.popleft()
for i in self.Graph[str(person)]: #判断该点的下一级元素
if self.mark[i] == 0: #如果没有访问
self.mark[i] = 1 #则标记为1,视为现在已经访问
d.append(i) #并加入到队列中
self.edgeTo[str(i)] = int(person) #设置为主从顶点的关系
else:
pass
if start in self.edgeTo:
del self.edgeTo[start] #删除存储到列表中输入的起点元素
# print('edgeTo=', self.edgeTo)
for i in range(len(self.Graph)): # 准备一个新的数组,来存储到顶点S的最短路径
self.new_edgeTo[str(i)] = []
self.visited[str(i)] = 0 #创建一个新的判断标志的字典
for k, v in self.edgeTo.items(): #把edgeTo中的数据转换形式并存入到new_edgeTo中
self.new_edgeTo[str(v)].append(int(k))
# print('new_edgTo=', self.new_edgeTo)
self.dfs(start,end) #调用深度优先搜索
self.path = self.path[:self.depth+1]
# print(self.path[:self.depth+1]) #输出最短路径
print(self.path)
if len(self.path[:self.depth + 1]) == 0:
print("no path")
else:
print("path:",end='')
for i in self.path[:self.depth]:
print(i, end='-->')
print(self.path[self.depth])
if __name__ == "__main__":
Graph = {'0':[5,1],
'1':[],
'2':[0,3],
'3':[5,2],
'4':[3,2],
'5':[4],
'6':[0,4,9],
'7':[6,8],
'8':[7,9],
'9':[10,11],
'10':[12],
'11':[4,12],
'12':[9],
}
g = optimal_path(Graph)
g.bfs(8,4)
结果:
[8, 7, 6, 4]
path:8-->7-->6-->4