【算法】python有向图中的最优路径

  1. 给定有向图一起点S与顶点V,判断S与V之间是否存在路径,若有,找出最短的路径
# -*- coding: utf-8 -*-
# /usr/bin/python
# 作者:kimicr
# 实验日期:20190322
# Python版本:3.6.3
# 给定有向图一起点S与顶点V,判断S与V之间是否存在路径,若有,找出最短的路径
# 分析:用广度优先搜索S到各个点的路径,再用深度优先搜索找到最短路径
from collections import deque
class optimal_path(object):
    def __init__(self,Graph):
        self.Graph = Graph
        self.edgeTo = {}
        self.depth = 0
        self.mark = []
        for i in range(len(self.Graph)):
            self.mark.append(0)
        self.path = self.mark[:]

    def dfs(self,start,end):
        if start == end:
            self.path[self.depth] = int(start)
            return True
        if self.visited[str(start)] == 1:
            return False
        else:
            self.visited[str(start)] = 1
            self.path[self.depth] = int(start)
            self.depth += 1
        for i in self.new_edgeTo[str(start)]:
            if self.dfs(i,end) == True :
                return True
        self.depth -= 1
        return False

    def bfs(self, start, end):  # 寻找起点为start的路径,并得到相应字典edgeTo
        self.visited = {}
        d = deque()
        d.append(int(start))
        self.new_edgeTo = {}
        self.mark[int(start)] = 1    #先把起点存入队列并标记
        while d:
            person = d.popleft()
            for i in self.Graph[str(person)]:  #判断该点的下一级元素
                if self.mark[i] == 0:           #如果没有访问
                    self.mark[i] = 1            #则标记为1,视为现在已经访问
                    d.append(i)                 #并加入到队列中
                    self.edgeTo[str(i)] = int(person)       #设置为主从顶点的关系
                else:
                    pass
        if start in self.edgeTo:
            del self.edgeTo[start]          #删除存储到列表中输入的起点元素
#        print('edgeTo=', self.edgeTo)
        for i in range(len(self.Graph)):  # 准备一个新的数组,来存储到顶点S的最短路径
            self.new_edgeTo[str(i)] = []
            self.visited[str(i)] = 0        #创建一个新的判断标志的字典

        for k, v in self.edgeTo.items():        #把edgeTo中的数据转换形式并存入到new_edgeTo中
            self.new_edgeTo[str(v)].append(int(k))
#        print('new_edgTo=', self.new_edgeTo)
        self.dfs(start,end)                     #调用深度优先搜索
        self.path = self.path[:self.depth+1]
#        print(self.path[:self.depth+1])         #输出最短路径
        print(self.path)
        if len(self.path[:self.depth + 1]) == 0:
            print("no path")
        else:
            print("path:",end='')
            for i in self.path[:self.depth]:
                print(i, end='-->')
            print(self.path[self.depth])


if __name__ == "__main__":
    Graph = {'0':[5,1],
             '1':[],
             '2':[0,3],
             '3':[5,2],
             '4':[3,2],
             '5':[4],
             '6':[0,4,9],
             '7':[6,8],
             '8':[7,9],
             '9':[10,11],
             '10':[12],
             '11':[4,12],
             '12':[9],
    }
    g = optimal_path(Graph)
    g.bfs(8,4)

结果:

[8, 7, 6, 4]
path:8-->7-->6-->4

你可能感兴趣的:(Python,python实践)