pytorch神经网络模板

1. pytorch加载数据并进行训练测试

import time
from torch import optim, nn
from torch.utils import data
from dataset import MyDataset
from model import Net
from function import *

# 加载数据
cur_path = os.getcwd()
data_path = os.path.join(cur_path, "data\\preliminary")
train_dataset = MyDataset(mode='train', data_path=data_path)
train_dataloader = data.DataLoader(train_dataset, batch_size=20, shuffle=True)
valid_dataset = MyDataset(mode='valid', data_path=data_path)
valid_dataloader = data.DataLoader(valid_dataset, batch_size=20)

# 实例化模型
model = Net()

# 优化器
optimizer = optim.Adam(model.parameters(), lr=0.0003)

# 损失函数
criterion = nn.CrossEntropyLoss()

# 训练批次
epochs = 50

# 模型保存路径
save_path = 'checkpoint/'
if not os.path.exists(save_path):
    os.mkdir(save_path)

# 训练 & 测试过程
train_acc, valid_acc, train_losses, valid_losses = [], [], [], []
best_acc = 0.0
for epoch in range(epochs):
    epoch_start = time.time()
    model.train()
    train_loss = 0.0
    train_a = 0.0
    valid_loss = 0.0
    valid_a = 0.0
    t0 = 0
    t1 = 0
    for i, (inputs, labels) in enumerate(train_dataloader):
        inputs, labels = torch.tensor(inputs, dtype=torch.float), torch.tensor(labels, dtype=torch.float)
        optimizer.zero_grad()
        outputs = model(inputs)

        loss = criterion(outputs, labels)
        train_loss += loss.item()
        loss.backward()
        optimizer.step()
        ret, predictions = torch.max(outputs.data, 1)  # 返回概率大的值和索引
        labels = labels[:, -1]
        acc = torch.sum(predictions == labels) / outputs.shape[0]
        train_a += acc.item()
        t0 = t0 + 1
    with torch.no_grad():
        model.eval()
        for j, (inputs, labels) in enumerate(valid_dataloader):
            inputs, labels = torch.tensor(inputs, dtype=torch.float), torch.tensor(labels, dtype=torch.float)
            outputs = model(inputs)
            loss = criterion(outputs, labels)
            valid_loss += loss.item()
            ret, predictions = torch.max(outputs.data, 1)
            labels = labels[:, -1]
            acc = torch.sum(predictions == labels) / outputs.shape[0]
            valid_a += acc.item()
            t1 = t1 + 1
    train_loss = train_loss / t0
    train_a = train_a / t0
    valid_loss = valid_loss / t1
    valid_a = valid_a / t1
    train_acc.append(train_a)
    valid_acc.append(valid_a)
    train_losses.append(train_loss)
    valid_losses.append(valid_loss)

    epoch_end = time.time()

    # 保存模型
    if valid_a > best_acc:
        torch.save(model.state_dict(), save_path + 'best_model')
        best_acc = valid_a
    if epoch == epochs - 1:
        torch.save(model.state_dict(), save_path + 'final_model')

    print("Epoch: {}/{}, Training:\tLoss: {:.4f}, Accuracy: {:.2f}%, "
          "\t\tValidation:\tLoss: {:.4f}, Accuracy: {:.2f}%, Time: {:.4f}s".format(
        epoch + 1, epochs, train_loss, train_a * 100, valid_loss, valid_a * 100,
        epoch_end - epoch_start))

print(f'training end.best_model save to {save_path}.')

plot_acc(train_acc, valid_acc)
plot_loss(train_losses, valid_losses)
plot_results(epochs, train_acc, train_losses, valid_acc, train_losses)

2. 自定义Dataset

from scipy.io import loadmat
import os
from torch.utils import data
import pandas as pd
import numpy as np


def convert2oneHot(index, Lens):
    hot = np.zeros((Lens,))
    hot[index] = 1
    return hot


def normalize(v):
    part1 = v - v.mean(axis=1).reshape((v.shape[0], 1))
    part2 = v.max(axis=1).reshape((v.shape[0], 1)) + 2e-12
    return part1 / part2


class MyDataset(data.Dataset):
    def __init__(self, mode, data_path):
        super(MyDataset, self).__init__()

        self.csv_path = os.path.join(data_path, "reference.csv")
        self.data_path = os.path.join(data_path, "TRAIN")
        self.temp_list = []  # 文件路径
        self._parse_dataset()

        self.mode = mode.lower()
        if self.mode == 'train':
            self.temp_list = self.temp_list[:500]
        elif self.mode == 'valid':
            self.temp_list = self.temp_list[500:]
        else:
            raise ValueError('mode must be "train" or "valid"!')

    def __getitem__(self, item):
        feature = self.get_feature(self.temp_list[item, 0])
        label = convert2oneHot(self.temp_list[item, 1], 2)
        return feature, label

    def __len__(self):
        return len(self.temp_list)

    def get_feature(self, name):
        mat = loadmat(os.path.join(self.data_path, name))
        dat = mat['data']
        feature = dat[0:12]  # feature: (12, 5000)
        # return normalize(feature).transpose()  # feature: (5000, 12)
        return normalize(feature)

    def _parse_dataset(self):
        self.temp_list = np.array(pd.read_csv(self.csv_path))

3. 创建模型

from torch import nn
# input: (20, 12, 5000)

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()

        self.layer1 = nn.Sequential(
            nn.Conv1d(in_channels=12, out_channels=16, kernel_size=16, stride=2, padding=8),
            nn.ReLU(),
            nn.Conv1d(in_channels=16, out_channels=16, kernel_size=16, stride=2, padding=8),
            nn.ReLU(),
            nn.MaxPool1d(2)
        )
        self.layer2 = nn.Sequential(
            nn.Conv1d(in_channels=16, out_channels=64, kernel_size=8, stride=2, padding=4),
            nn.ReLU(),
            nn.Conv1d(in_channels=64, out_channels=64, kernel_size=8, stride=2, padding=4),
            nn.ReLU(),
            nn.MaxPool1d(2)
        )
        self.layer3 = nn.Sequential(
            nn.Conv1d(in_channels=64, out_channels=128, kernel_size=4, stride=2, padding=2),
            nn.ReLU(),
            nn.Conv1d(in_channels=128, out_channels=128, kernel_size=4, stride=2, padding=2),
            nn.ReLU(),
            nn.MaxPool1d(2)
        )
        self.layer4 = nn.Sequential(
            nn.Conv1d(in_channels=128, out_channels=256, kernel_size=2, stride=1, padding=1),
            nn.ReLU(),
            nn.Conv1d(in_channels=256, out_channels=256, kernel_size=2, stride=1, padding=1),
            nn.ReLU(),
            nn.MaxPool1d(2)
        )
        self.layer5 = nn.Sequential(
            nn.AdaptiveAvgPool1d(2),
            nn.Flatten()
        )

        self.layer6 = nn.Sequential(
            nn.Linear(in_features=256 * 2, out_features=2),
            nn.Dropout(0.3),
            nn.Softmax()
        )

    def forward(self, x):
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)
        x = self.layer5(x)
        x = self.layer6(x)
        return x

你可能感兴趣的:(神经网络,pytorch,深度学习)