Pytorch(二) —— 激活函数、损失函数及其梯度

Pytorch(二) —— 激活函数、损失函数及其梯度

  • 1.激活函数
    • 1.1 Sigmoid / Logistic
    • 1.2 Tanh
    • 1.3 ReLU
    • 1.4 Softmax
  • 2.损失函数
    • 2.1 MSE
    • 2.2 CorssEntorpy
  • 3. 求导和反向传播
    • 3.1 求导
    • 3.2 反向传播

1.激活函数

1.1 Sigmoid / Logistic

δ ( x ) = 1 1 + e − x δ ′ ( x ) = δ ( 1 − δ ) \delta(x)=\frac{1}{1+e^{-x}}\\\delta'(x)=\delta(1-\delta) δ(x)=1+ex1δ(x)=δ(1δ)

import matplotlib.pyplot as plt
import torch.nn.functional as F
x = torch.linspace(-10,10,1000)
y = F.sigmoid(x)
plt.plot(x,y)
plt.show()

Pytorch(二) —— 激活函数、损失函数及其梯度_第1张图片

1.2 Tanh

t a n h ( x ) = e x − e − x e x + e − x ∂ t a n h ( x ) ∂ x = 1 − t a n h 2 ( x ) tanh(x)=\frac{e^x-e^{-x}}{e^x+e^{-x}}\\\frac{\partial tanh(x)}{\partial x}=1-tanh^2(x) tanh(x)=ex+exexexxtanh(x)=1tanh2(x)

import matplotlib.pyplot as plt
import torch.nn.functional as F
x = torch.linspace(-10,10,1000)
y = F.tanh(x)
plt.plot(x,y)
plt.show()

Pytorch(二) —— 激活函数、损失函数及其梯度_第2张图片

1.3 ReLU

f ( x ) = m a x ( 0 , x ) f(x)=max(0,x) f(x)=max(0,x)

import matplotlib.pyplot as plt
import torch.nn.functional as F
x = torch.linspace(-10,10,1000)
y = F.relu(x)
plt.plot(x,y)
plt.show()

Pytorch(二) —— 激活函数、损失函数及其梯度_第3张图片

1.4 Softmax

p i = e a i ∑ k = 1 N e a k ∂ p i ∂ a j = { p i ( 1 − p j ) i = j − p i p j i ≠ j p_i=\frac{e^{a_i}}{\sum_{k=1}^N{e^{a_k}}}\\ \frac{\partial p_i}{\partial a_j}=\left\{ \begin{array}{lc} p_i(1-p_j) & i=j \\ -p_ip_j&i\neq j\\ \end{array} \right. pi=k=1Neakeaiajpi={pi(1pj)pipji=ji=j

import torch.nn.functional as F
logits = torch.rand(10)
prob = F.softmax(logits,dim=0)
print(prob)
tensor([0.1024, 0.0617, 0.1133, 0.1544, 0.1184, 0.0735, 0.0590, 0.1036, 0.0861,
        0.1275])

2.损失函数

2.1 MSE

import torch.nn.functional as F
x = torch.rand(100,64)
w = torch.rand(64,1)
y = torch.rand(100,1)
mse = F.mse_loss(y,x@w)
print(mse)
tensor(238.5115)

2.2 CorssEntorpy

import torch.nn.functional as F
x = torch.rand(100,64)
w = torch.rand(64,10)
y = torch.randint(0,9,[100])
entropy = F.cross_entropy(x@w,y)
print(entropy)
tensor(3.6413)

3. 求导和反向传播

3.1 求导

  • Tensor.requires_grad_()
  • torch.autograd.grad()
import torch.nn.functional as F
import torch
x = torch.rand(100,64)
w = torch.rand(64,1)
y = torch.rand(100,1)
w.requires_grad_()
mse = F.mse_loss(x@w,y)
grads = torch.autograd.grad(mse,[w])
print(grads[0].shape)
torch.Size([64, 1])

3.2 反向传播

  • Tensor.backward()
import torch.nn.functional as F
import torch
x = torch.rand(100,64)
w = torch.rand(64,10)
w.requires_grad_()
y = torch.randint(0,9,[100,])
entropy = F.cross_entropy(x@w,y)
entropy.backward()
w.grad.shape
torch.Size([64, 10])

by CyrusMay 2022 06 28

人生 只是 须臾的刹那
人间 只是 天地的夹缝
——————五月天(因为你 所以我)——————

你可能感兴趣的:(Pytorch,深度学习(神经网络)专题,pytorch,机器学习,深度学习,人工智能,python)